首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have attracted considerable attention for their application in biomedicine. Here, silica‐coated NaGdF4:Yb,Er/NaGdF4 nanoparticles with a tetrasubstituted carboxy aluminum phthalocyanine (AlC4Pc) photosensitizer covalently incorporated inside the silica shells were prepared and applied in the photodynamic therapy (PDT) and magnetic resonance imaging (MRI) of cancer cells. These UCNP@SiO2(AlC4Pc) nanoparticles were uniform in size, stable against photosensitizer leaching, and highly efficient in photogenerating cytotoxic singlet oxygen under near‐infrared (NIR) light. In vitro studies indicated that these nanoparticles could effectively kill cancer cells upon NIR irradiation. Moreover, the nanoparticles also demonstrated good MR contrast, both in aqueous solution and inside cells. This is the first time that NaGdF4:Yb,Er/NaGdF4 upconversion‐nanocrystal‐based multifunctional nanomaterials have been synthesized and applied in PDT. Our results show that these multifunctional nanoparticles are very promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering.  相似文献   

2.
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near‐infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG‐b‐PCL block‐copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37 %) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.  相似文献   

3.
水为洗脱液在表面活性剂胶束涂层固定相上分离手性药物   总被引:2,自引:0,他引:2  
讨论了手性固定相稳定的条件,以表面活性剂胶束涂层为固定相,纯水作流动相,对氨氯地平,麻黄碱,伪麻黄碱,芬必得,美西律平和扑尔敏等外消旋药物进行了手性拆分,探索了手性药物氨地平及麻黄碱,伪麻黄碱的分离条件,当流动相的PH值为5.5时分离效果最佳,在流动相中加入2.5-5mmol/L硼酸时分离因子较大。  相似文献   

4.
Iron oxide@Poly(Glycidylmethacrylate‐methyl methacrylate‐divinyl benzene) magnetic composite core shell microspheres Fe3O4@P(GMA‐MMA‐DVB) with epoxy group on the surface was designed and synthesized by solvothermal process followed by distillation polymerization. The surface epoxy group was modified with amino group of ethylene diamine (EDA) to prepare Fe3O4@P(GMA‐MMA‐DVB)/NH2 microspheres, and then effects of modification on the structure, interfacial behavior and hence demulsification of the amino modified epoxy coating were examined. The prepared magnetic microspheres were characterized using a laser particle size analyzer, transmission electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and thermogravimetric analysis. Fourier transform infrared spectrometer analysis indicates the presence of epoxy group, amino group and Fe3O4 in the final Fe3O4@P(GMA‐MMA‐DVB) and Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres. Our experimental results show that Fe3O4@P(GMA‐MMA‐DVB)/NH2 magnetic core shell microspheres exhibit good interfacial and demulsification properties and able to remove emulsified water from stable emulsion. The resulting microspheres showed excellent magnetic properties and further these can be recycled and reused by magnetic separation.  相似文献   

5.
《高分子科学》2019,37(12):1224-1233
Drug-resistance and drastic side effects are two major issues of traditional chemotherapy which may result in trail failure even death. Nanoparticle-mediated multidrug combination treatment has been proven to be a feasible strategy to overcome these challenges. In the present study, amphipathic block polymer of methoxyl poly(ethylene glycol)-poly(aspartyl(dibutylethylenediamine)-co-phenylalanine)(m PEG-P(Asp(DBA)-co-Phe)) was synthesized and self-assembled into p H-responsive polymeric vesicle. The vesicle was utilized to co-deliver cancer-associated epidermal growth factor(EGFR) inhibitor of afatinib and DNA-damaging chemotherapeutic doxorubicin hydrochloride(DOX) for enhanced non-small-cell lung cancer(NSCLC) therapy. As evaluated in vitro, the p H-responsive design of nanovesicle resulted in a rapid release of encapsulated drugs into tumor cells and caused enhanced cell apoptosis. In addition, in vivo therapeutic studies were conducted and the results evidenced that the co-delevery of DOX and afatinib using p H-sensitive nanovector was a promising strategy for NSCLC treatment.  相似文献   

6.
A nanoemulsion with a porphyrin shell (NewPS) was created by the self‐assembly of porphyrin salt around an oil core. The NewPS system has excellent colloidal stability, is amenable to different porphyrin salts and oils, and is capable of co‐loading with chemotherapeutics. The porphyrin salt shell enables porphyrin‐dependent optical tunability. The NewPS consisting of pyropheophorbide a mono‐salt has a porphyrin shell of ordered J‐aggregates, which produced a narrow, red‐shifted Q‐band with increased absorbance. Upon nanostructure dissociation, the fluorescence and photodynamic reactivity of the porphyrin monomers are restored. The spectrally distinct photoacoustic imaging (at 715 nm by intact NewPS) and fluorescence increase (at 671 nm by disrupted NewPS) allow the monitoring of NewPS accumulation and disruption in mice bearing KB tumors to guide effective photodynamic therapy. Substituting the oil core with Lipiodol affords additional CT contrast, whereas loading paclitaxel into NewPS facilitates drug delivery.  相似文献   

7.
参照文献方法合成了BSA保护的水溶性发光金纳米粒子, 并考察了此探针在非离子表面活性剂曲通X-100中的发光行为.根据观察到的发光增强效应, 建立了一种简单的测定曲通X-100的方法.考察了发光金纳米粒子的浓度、体系酸度、反应时间及共存物质对测定的影响.在最佳条件下, 发光强度与曲通X-100的浓度分别在0~150 μmol/L和150~600 μmol/L范围内分段成正比关系.两条工作曲线的交点所对应的浓度与曲通X-100的临界胶束浓度十分吻合, 为胶束形成过程提供了直接的指示.作为一种生物相容性探针, 发光金纳米粒子被用于生物学样品中曲通X-100的分析测定, 结果令人满意.  相似文献   

8.
Photodynamic therapy (PDT) is a phototoxic treatment with high spatial and temporal control and has shown tremendous promise in the management of cancer due to its high efficacy and minimal side effects. PDT efficacy is dictated by a complex relationship between dosimetry parameters such as the concentration of the photosensitizer at the tumor site, its spatial localization (intracellular or extracellular), light dose and distribution, oxygen distribution and concentration, and the heterogeneity of the inter- and intratumoral microenvironment. Studying and characterizing these parameters, along with monitoring tumor heterogeneity pre- and post-PDT, provides essential data for predicting therapeutic response and the design of subsequent therapies. In this review, we elucidate the role of ultrasound (US) and photoacoustic imaging in improving PDT-mediated outcomes in cancer—from tracking photosensitizer uptake and vascular destruction, to measuring oxygenation dynamics and the overall evaluation of tumor responses. We also present recent advances in multifunctional theranostic nanomaterials that can improve either US or photoacoustic imaging contrast, as well as deliver photosensitizers specifically to tumors. Given the wide availability, low-cost, portability and nonionizing nature of US and photoacoustic imaging, together with their capabilities of providing multiparametric morphological and functional information, these technologies are thusly inimitable when deployed in conjunction with PDT.  相似文献   

9.
基于金纳米棒的生物检测、细胞成像和癌症的光热治疗   总被引:5,自引:0,他引:5  
由于金纳米棒颗粒独特的可调的表面等离子共振特性,使得金纳米棒颗粒在纳米复合材料和功能化纳米器件的构建、纳米生物技术、生物医学等领域具有广泛而重要的应用前景。本文综述了金纳米棒颗粒的生物检测、细胞成像和癌症的光热治疗方面的最新研究进展,并介绍了金纳米棒颗粒的光学性质和金纳米棒颗粒和几种主要的表面修饰方法,对金纳米棒颗粒在生物应用过程中存在的主要问题进行了讨论。  相似文献   

10.
Although linker‐free Au nanoparticle superstructures (AuNPSTs) have demonstrated to have satisfactory photothermal conversion efficiency owing to their enhanced visible‐near‐infrared absorption caused by the interparticle coupling, they cannot be used directly for in vivo photothermal therapy (PTT) of cancer because of poor stability. To address this issue, we herein propose a polymer‐coating strategy, dressing AuNPST on a poly(dopamine) (PDA) coat, and successfully investigate the in vivo PTT effect of AuNPSTs. By employing Triton X‐100 as an emulsifier for the formation of AuNPSTs, dopamine was site‐specifically polymerized around each AuNPST by the interaction between ?OH of Triton X‐100 and ?NH2 of dopamine. As‐fabricated AuNPST/PDA has a sphere‐like shape with an average diameter of ~106 nm and the PDA shell is about 10 nm PDA thick. The AuNPST/PDA shows enhanced durability to heat, acid, and alkali compared with bare AuNPST. Also, under 808 nm laser irradiation, AuNPST/PDA shows photothermal conversion efficiency of ~33%, higher than bare AuNPST (~23%). Significantly, AuNPST/PDA can be used as in‐vitro and in‐vivo PTT agent and shows excellent therapeutic efficacy for tumor ablation thanks to its enhanced stability and biocompatibility, indicative of its potential practicability in clinical PTT.  相似文献   

11.
A new second generation uricase electrode for urinary uric acid determination has been developed by chemically binding both uricase and redox mediator to inexpensive copper wire through simple electrodeposition of gold on copper surface and subsequent functionalization of the gold with L‐methionine. During a 209‐day testing period, the overall electrode performance exhibits in average a low oxidation potential of 0.33 V, a response time of 5 s, a widest linear calibration concentration range (0–2.38 mM, r2>0.9952), a sensitivity of 50 μA mM?1, and a detection limit of 2.4 μM. The measurement accuracy and precision for the determination of uric acid in human urine specimens were 85.6–95.5 % and 0.3–2.4 %, respectively. The developed uricase electrode is potential for clinical applications.  相似文献   

12.
Multifunctional, mesoporous, silica‐coated upconversion luminescent/magnetic NaGdF4:Yb/Er@NaGdF4:Yb@mSiO2? PEG (referred to as UCNPS; PEG=polyethylene glycol) nanocomposites were fabricated through a phase‐transfer‐assisted surfactant‐templating coating process, followed by hydrophilic polymer (PEG) functionalization to improve the stability and biocompatibility. The UCNP core imparts the nanomaterials with luminescence and magnetic properties for simultaneous upconversion optical and magnetic resonance (MR) imaging, whereas the mesoporous shell affords the nanomaterials the ability to load the anticancer drug doxorubicin. Proof‐of‐principle in vitro and in vivo experiments are presented to demonstrate that the resultant composite nanomaterials can serve as nanotheranostics for synchronous upconversion luminescence/MR dual modal imaging and anticancer drug delivery; this finally realizes the integration of diagnostics and the treatment of cancers.  相似文献   

13.
Discriminative detection of invasive and noninvasive breast cancers is crucial for their effective treatment and prognosis. However, activatable probes able to do so in vivo are rare. Herein, we report an activatable polymeric reporter (P-Dex) that specifically turns on near-infrared (NIR) fluorescent and photoacoustic (PA) signals in response to the urokinase-type plasminogen activator (uPA) overexpressed in invasive breast cancer. P-Dex has a renal-clearable dextran backbone that is linked with a NIR dye caged with an uPA-cleavable peptide substrate. Such a molecular design allows P-Dex to passively target tumors, activate NIR fluorescence and PA signals to effectively distinguish invasive MDA-MB-231 breast cancer from noninvasive MCF-7 breast cancer, and ultimately undergo renal clearance to minimize the toxicity potential. Thus, this polymeric reporter holds great promise for the early detection of malignant breast cancer.  相似文献   

14.
The condensation of DNA in a controlled manner is one of the key steps in gene delivery and gene therapy. For this purpose, a water‐soluble supramolecular nanostructure is constructed by coating 14 β‐cyclodextrins onto the surface of a gold nanoparticle, followed by the noncovalent association of different amounts of anthryl‐modified adamantanes with coated β‐cyclodextrins. The strong binding of β‐cyclodextrins with anthryl adamantanes (KS=8.61×104 M ?1) efficiently stabilizes the supramolecular nanostructure. Spectrophotometric fluorescence spectra and microscopic studies demonstrated that, with many anthryl grafts that can intercalate in the outer space of the DNA double helix, this supramolecular nanostructure showed good condensation abilities to calf thymus DNA. Significantly, the condensation efficiency of supramolecular nanostructure towards DNA could be conveniently controlled by adjusting the ratio between gold nanoparticles and anthryl adamantane grafts, leading to the formation of DNA condensates of a size that are suitable for the endocytosis of hepatoma cells, which will make it potentially applicable in many fields of medicinal science and biotechnology.  相似文献   

15.
Photothermal therapy (PTT), as a noninvasive and local treatment, has emerged as a promising anti-tumor strategy with minimal damage to normal tissue under spatiotemporally controllable irradiation. However, the necrosis of cancer cells during PTT will induce an inflammatory reaction, which may motivate tumor regeneration and resistance to therapy. In this study, polyoxometalates and a chloroquine diphosphate (CQ) co-loaded metal–organic framework nanoplatform with hyaluronic acid coating was constructed for efficient ovarian cancer therapy and anti-inflammation. Our results demonstrated that this nanoplatform not only displayed considerable photothermal therapeutic capacity under 808 nm near-infrared laser, but also had an impressive anti-inflammatory capacity by scavenging reactive oxygen species in the tumor microenvironment. CQ with pH dependence was used for the deacidification of lysosomes and the inhibition of autophagy, cutting off a self-protection pathway induced by cell necrosis–autophagy, and achieving the synergistic treatment of tumors. Therefore, we combined the excellent properties of these materials to synthesize a nanoplatform and explored its therapeutic effects in various aspects. This work provides a promising novel prospect for PTT/anti-inflammation/anti-autophagy combinations for efficient ovarian cancer treatment through the fine tuning of material design.  相似文献   

16.
Reversed photoresponse: Indium tin oxide (ITO)/Au nanoparticle (NP)/TiO2 electrodes (see picture) exhibit cathodic photocurrents and positive photopotentials under visible light, whereas ITO/TiO2/Au NP electrodes show an inverted response. This behavior indicates that electron transfer occurs from the plasmon‐excited Au NPs to the TiO2 film. An enhanced O2 photoreduction activity is found for ITO/Au NP/TiO2/Pt electrodes.

  相似文献   


17.
Two birds with one auric stone : The title system acts as a highly efficient heterogeneous catalyst for the one‐pot tandem synthesis of imines or oximes from alcohols and the corresponding amines under mild conditions (see scheme; HAP= hydroxyapatite).

  相似文献   


18.
We herein develop a facile catalyst‐free method to prepare hyperbranched hydroxyl‐enriched aliphatic polycarbonate according to SCROP strategy. PEG‐attached multiarm hyperbranched copolymer HEHDO‐star‐mPEG was further designed. It was found that HEHDO‐star‐mPEG can self‐assemble into supramolecular multimolecular micelles in water. HEHDO‐star‐mPEG micelle showed excellent stability with respect to micellar size upon dilution, and displayed good cell‐biocompatibility. An anticancer drug of doxorubicin with hydrogen‐bonding functionality was incorporated into obtained micelles to establish a drug delivery system model. A high drug‐loading content as well as sustained release pattern for HEHDO‐star‐mPEG based delivery system was achieved.

  相似文献   


19.
20.
A silver-ion-coupled black phosphorus (BP) vesicle (BP Ve-Ag+) with a second near infrared (NIR-II) window photoacoustic (PA) imaging capability was firstly constructed to maximize the potential of BP quantum dot (QD) in deeper bioimaging and diversified therapy. The embedded Ag+ could improve the relatively large band gap of BP QD via intense charge coupling based on theoretical simulation results, subsequently leading to the enhanced optical absorption capability, accompanied with the occurrence of the strong NIR-II PA signal. Guiding by NIR-II PA bioimaging, the hidden Ag+ could be precisely released with the disassembly of Ve during photodynamic therapy process and captured by macrophages located in lesion region for arousing synergistic cancer photodynamic/Ag+ immunotherapy. BP Ve-Ag+ can contrapuntally kill pathogenic bacteria and accelerate wound healing monitored by NIR-II PA imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号