首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose to use the relatively new mathematical and numerical tool wavelets in quantum chemical studies. A short survey is given of the most elementary aspects of wavelet theory. The connection between wavelets and coherent states is discussed together with Zak's so-called kq-representation. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Nanoscale Cocore–Ptshell particles were successfully synthesized based on a successive reduction strategy. The as-prepared core–shell nanoparticles were characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy, transmission electron microscope, and electrochemical methods. It was found that the catalytic reactivity of Cocore–Ptshell/C catalysts toward oxygen reduction was enhanced. It is believed that the prepared Cocore–Ptshell/C nanoparticles could be promising for cathode catalysis in proton exchange membrane fuel cells with much reduced Pt content, but significantly increased catalytic activity.  相似文献   

3.
Determining the net charge and protonation states populated by a small molecule in an environment of interest or the cost of altering those protonation states upon transfer to another environment is a prerequisite for predicting its physicochemical and pharmaceutical properties. The environment of interest can be aqueous, an organic solvent, a protein binding site, or a lipid bilayer. Predicting the protonation state of a small molecule is essential to predicting its interactions with biological macromolecules using computational models. Incorrectly modeling the dominant protonation state, shifts in dominant protonation state, or the population of significant mixtures of protonation states can lead to large modeling errors that degrade the accuracy of physical modeling. Low accuracy hinders the use of physical modeling approaches for molecular design. For small molecules, the acid dissociation constant (pKa) is the primary quantity needed to determine the ionic states populated by a molecule in an aqueous solution at a given pH. As a part of SAMPL6 community challenge, we organized a blind pKa prediction component to assess the accuracy with which contemporary pKa prediction methods can predict this quantity, with the ultimate aim of assessing the expected impact on modeling errors this would induce. While a multitude of approaches for predicting pKa values currently exist, predicting the pKas of drug-like molecules can be difficult due to challenging properties such as multiple titratable sites, heterocycles, and tautomerization. For this challenge, we focused on set of 24 small molecules selected to resemble selective kinase inhibitors—an important class of therapeutics replete with titratable moieties. Using a Sirius T3 instrument that performs automated acid–base titrations, we used UV absorbance-based pKa measurements to construct a high-quality experimental reference dataset of macroscopic pKas for the evaluation of computational pKa prediction methodologies that was utilized in the SAMPL6 pKa challenge. For several compounds in which the microscopic protonation states associated with macroscopic pKas were ambiguous, we performed follow-up NMR experiments to disambiguate the microstates involved in the transition. This dataset provides a useful standard benchmark dataset for the evaluation of pKa prediction methodologies on kinase inhibitor-like compounds.  相似文献   

4.
In this study, magnetic multimodal nanoparticles with potential applications in magnetic- and nuclear-medicine imaging, magnetic resonance imaging, hyperthermia, and theranostic (therapeutic and diagnostic), applications were prepared by coating iron oxide nanoparticles with silica (core–shell), functionalizing with aminopropyltriethoxy silane and coupling with diethylenetriamine pentaacetic acid ligand (DTPA). Radiolabeling of core–shell–DTPA particles with 68Ga radiometal was carried out through chelation of 68Ga(III) ions by DTPA and was used for positron emission tomography. The biodistribution of the 68Ga-radiolabeled magnetic nanoparticles compared to free 68Ga(III) was checked in normal Balb/c mice up to 2 h.  相似文献   

5.
CeO2–ZrO2–Al2O3 ternary oxides as a support for CO oxidation was synthesized successfully via supercritical anti-solvent (SAS) precipitation using CO2 as the anti-solvent and methanol as the solvent. It was found that the CeO2–ZrO2–Al2O3 fabricated by SAS precipitation (CZA1) had superior resistance to sintering compared to the traditional co-precipitation method (CZA2). Meanwhile, the oxygen storage/release rate of CAZ1 was almost 1.5 times higher than that of CZA2 and the total oxygen storage capacity (OSC) of CAZ1 was almost twice as high as CZA2. The interactions between the Pd and the CeO2–ZrO2–Al2O3 support were stronger for the support synthesized by SAS precipitation. The conversion of CO oxidation of Pd/CZA1 was even better than that of Pd/CZA2, especially at high GHSV.  相似文献   

6.
7.
The reaction mechanism of Se + O3 on the singlet potential energy has been investigated at CCSD(T)/6-311++G(2df,2pd) level of theory based on the geometric parameters optimized at the B3LYP/6-311++G(3df,3pd) level of theory. The calculated results show that the reactants are firstly associated into the adduct Se–O3 with any intrinsic barrier. Subsequently, through a variety of transformations of isomer Se–O3, two kinds of products P1(SeO3(D3h)) and P2(SeO + 3O2) are obtained. The breakage and formation of the chemical bonds in the reaction have been studied by the topological analysis of electronic density. The topological analysis results show that the ring transitional structure region does not only occur in cis-OSeOO → SeO3(Cs) process but also occur in SeO3(Cs) → SeO3(D3h).  相似文献   

8.
The barrier heights involved in the abstraction of a hydrogen atom from n‐butanol by the hydroperoxyl radical have been computed with both compound (CBS‐QB3, CBS‐APNO, G3) and coupled cluster methods. In particular, the benchmark computations CCSD(T)/cc‐pVTZ//MP2/6‐311G(d,p) were used to determine that the barrier heights increase in the order α <γ < β < δ < OH. Two prereaction hydrogen‐bonded complexes are formed, one of which connects the TGt conformer of n‐butanol to the α and β transition states and the other connects to the γ and OH channels from the TGg conformer. Four postreaction complexes were also found which link the transition states to the products, hydrogen peroxide + C4H9O radical. Abstraction from the terminal δ carbon atom does not involve either a pre or postreaction complex. A number of DFT functionals—B3LYP, BMK, MPWB1K, BB1K, MPW1K, and M05‐2X—were tested to see whether the correct ranking could be obtained with computationally less expensive methods. Only the later functional predicts the correct order but requires a basis set of 6‐311++G(df,pd) to achieve this. However, the absolute values obtained do not agree that well with the benchmarks; the composite G3 method predicts the correct order and comes closest (≤ 2 kJ, mol ?1) in absolute numerical terms for H‐abstraction from carbon. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

9.
This work proposes a new strategy to prepare a hematite (α-Fe2O3) bilayer photoanode by hydrothermally depositing α-Fe2O3 (B) on the α-Fe2O3 (A) films prepared by electrochemical deposition. Compact smooth surfaced α-Fe2O3 (A) films were electrochemically deposited on FTO (SnO2:F) substrates from an aqueous bath. The α-Fe2O3 (A), α-Fe2O3 (B), and α-Fe2O3/α-Fe2O3 bilayer films’ characteristics were defined by X-ray diffraction (XRD) measurements, field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) spectroscopy. Pure crystalline α-Fe2O3 (B) films with a typical anisotropic-like nanoparticle formation, which exhibited nanostructured rods covering the substrate and formed the characteristic mesoporous film morphology, were hydrothermally deposited on α-Fe2O3 (A) films prepared by electrochemical depositing in a solution bath at 25 °C and a potential of ??0.15 V. The photocurrent measurements exhibited increased intrinsic surface states (or defects) at the α-Fe2O3 (A)/α-Fe2O3 (B) interface. The photoelectrochemical performance of the α-Fe2O3 (A)/α-Fe2O3 (B) structure was examined by chronoamperometry, which found that the α-Fe2O3 (A)/α-Fe2O3 (B) structure exhibited greater photoelectrochemical activity than the α-Fe2O3 (A) and α-Fe2O3 (B) thin films. The highest photocurrent density was obtained for the bilayer α-Fe2O3 (A)/α-Fe2O3 (B) films in 1 M NaOH electrolyte. This great photoactivity was ascribed to the highly active surface area, and to the externally applied bias that favored the transfer and separation of photogenerated charge carriers in α-Fe2O3 (A)/α-Fe2O3 (B). The improved photocurrent density was attributed to an appropriate band edge alignment of semiconductors and to enhanced light absorption by both semiconductors. The best performing samples were α-Fe2O3 (A)/α-Fe2O3 (B), which reached the maximum incident photon conversion efficiencies (IPCE) of 400 nm at the potential of 0.1 V. In this case, the IPCE values were 3-fold higher than those of the α-Fe2O3 (A) and α-Fe2O3 (B) films.  相似文献   

10.
As one of the most recently developed membrane separation processes, nanofiltration (NF) has found a number of industrial applications. Ceramic NF membranes are also regarded as the appropriate choice in many applications, due to their higher chemical and physical stability. In this study, the rejection of the chloride ion is investigated using bi-layered γ-Al2O3-TiO2 NF membranes based on α-alumina supports. Compression is used in preparation of the supports and sol-gel dip-coating for the top-layer formation. SEM micrographs, XRD, and nitrogen adsorption/desorption isotherms are used for membrane characterisation. The results show that the calcination temperature (600°C) results in different crystal structures including the brookite phase of TiO2, the γ phase of Al2O3, and a combined phase of aluminium-titanium oxides. The average pore size of the membrane was identified as 1.6 nm using an adsorption/desorption isotherm. The rejection was also studied for the chloride ion, using a cross-flow filtration module. Filtration tests were carried out under different pressures, pH values, and salt concentrations; these showed a smoother behaviour particularly around the isoelectric points (IEPs) due to the dual-layer structure, with the best rejection at pH of approximately 5.  相似文献   

11.
A new method for producing a nanosized γ-Al2O3 powder was proposed, by which a saturated solution of aluminum oxychloride and sucrose was subjected to sequential heat treatment to 350°C to form a transient species and then to 800°C to form a nanosized γ-Al2O3 powder. The optimal treatment parameters were determined. Stages of the process were identified. The transient species and the nanosized γ-Al2O3 powder were studied.  相似文献   

12.
Two new reactive and highly selective turn-on fluorescent chemosensors based on the position of ring annulation of the naphthalene–thiazole moiety for aluminum ions in ethanol, were synthesized and investigated. It was found that sensors 2 and 4 exhibited a remarkable enhancement of emission upon complexation with Al3+. A TD-B3LYP/6-31G(d,p) calculation was performed to characterize the nature of the fluorescence behavior of sensors 2 and 4 upon Al3+ complexation. The mechanism of fluorescence was based on the cation promoted hydrolysis of ester and subsequent complexation. The combination of experimental and computational analyses provides a more complete understanding of the molecular level origin of these types of unique photophysical properties.  相似文献   

13.
In this paper we present our reworked approach to generate ligand protonation states with our structure preparation tool SPORES (Structure PrOtonation and REcognition System). SPORES can be used for the preprocessing of proteins and protein–ligand complexes as e.g. taken from the Protein Data Bank as well as for the setup of 3D ligand databases. It automatically assigns atom and bond types, generates different protonation, tautomeric states as well as different stereoisomers. In the revised version, pKa calculations with the ChemAxon software MARVIN are used either to determine the likeliness of a combinatorial generated protonation state or to determine the titrable atoms used in the combinatorial approach. Additionally, the MARVIN software is used to predict microspecies distributions of ligand molecules. Docking studies were performed with our recently introduced program PLANTS (Protein–Ligand ANT System) on all protomers resulting from the three different selection methods for the well established CCDC/ASTEX clean data set demonstrating the usefulness of especially the latter approach.  相似文献   

14.
Ab initio MP2/aug’-cc-pVTZ calculations have been performed on the complexes (CO)2(HB):PXH2 and (N2)2(HB):PXH2, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, in order to investigate the properties of these complexes which are stabilized by P B pnicogen bonds, with B the electron-pair donor. The binding energies of these complexes exhibit an exponential dependence on the P-B distance, but they do not correlate with the MEP minima for (CO)2(HB) and (N2)2(HB), nor with the MEP maxima for PXH2. For fixed X, the binding energy of (N2)2(HB):PXH2 is greater than that of (CO)2(HB):PXH2. Charge-transfer stabilizes both series of complexes, and occurs from the B electron pair to the antibonding P-A σ orbital, with A the atom of X directly bonded to P. These charge-transfer energies also exhibit an exponential dependence on the P-B distance. In the complexes (CO)2(HB):PXH2, there is a second charge-transfer interaction from the lone pair on P to the antibonding π orbitals of the two C-O groups. Electron density analyses indicate that the P B bonds in these complexes are stabilized by relatively weak interactions with little covalent character. The chemical shieldings of 11B are essentially unaffected by complex formation. In contrast, the shieldings of 31P increase from 10 to 50 ppm in the four most strongly bound complexes, but decrease by ?4 to ?12 ppm in the remaining complexes. For each series of complexes, EOM-CCSD spin-spin coupling constants 1pJ(P-B) increase quadratically with decreasing P-B distance. For fixed X, 1pJ(P-B) is greater for (CO)2(HB):PXH2 compared to (N2)2(HB):PXH2.  相似文献   

15.
The reaction of CH3OCF2CF2OCHO with Cl atom has been investigated theoretically by direct dynamics method. The BB1K hybrid functional in conjunction with the 6-31 + G(d,p) basis set has been used to optimize the geometries for the stationary points and explore the potential energy surface of the reaction. Four rotation conformers (RC1-4) of CH3OCF2CF2OCHO are identified, and they are all considered in the kinetic calculation. For each conformer, there are two kinds of H-abstraction channels and one displacement channel, and the latter one should be negligible due to involving much higher energy barrier than the former two. The individual rate constants for each H-abstraction channel are evaluated by the improved canonical variational transition-state theory with a small-curvature tunneling correction. The overall rate constant is evaluated by the Boltzmann distribution function, and a fitted four-parameter rate constant expression is obtained over a wide temperature range of 200–2,000 K. The agreement between the calculated and available experimental value at 296 K is good. The contribution of each conformer to the title reaction is discussed with respect to the temperature. In addition, because of the lack of available experimental data for the species involved in the reactions, the enthalpies of the formation (ΔH f,298°) for the reactant and its product radicals are predicted via isodesmic reaction at the BB1K/6-31 + G(d,p) level.  相似文献   

16.
A new method of obtaining gastight ceramic based on CaZr0.95Sc0.05O3 – δ is presented. The microstructure and electric properties of the obtained samples, same as the behavior of composite electrodes in contact with this electrolyte, are studied for application of the obtained results in the technology of formation of electrochemical devices. The design of bilayer electrodes is suggested, in which the materials tested as the functional layer were layered lanthanum nickelate La2NiO4 + δ and substituted lanthanum nickelate La1.7Ca(Sr,Ba)0.3NiO4 + δ in combination with the electrolyte components of Ce0.8Sm0.2O2 – δ and BaCe0.89Gd0.1Cu0.01O3 – δ. The collector layer used was lanthanum nickelate–ferrite LaNi0.6Fe0.4O3 – δ and manganite La0.6Sr0.4MnO3 – δ that are characterized by high electron conductivity, low layer resistance and are close by their values of coefficient of linear thermal expansion to the materials of functional layers. Electrochemical activity of the obtained electrodes are compared with the characteristics of composite electrodes based on lanthanum ferrite–cobaltite La0.6Sr0.4Fe0.8Co0.2O3 – δ and deficient lanthanum manganite La0.75Sr0.2MnO3 – δ.  相似文献   

17.
The pK a constants and relative abundances of unionized and ionized forms of Montelukast sodium {the sodium salt of 2-[1-[[(1R)-1-[3-[2-(7-chloroquinolin-2-yl)ethenyl] phenyl]-3-[2-(2-hydroxypropan-2-yl)phenyl]propyl]sulfanylmethyl]cyclopropyl]acetic acid} and Levodropropizine {(2S)-3-(4-phenylpiperazin-1-yl)propane-1,2-diol} were determined potentiometrically from measurements at various pHs. These determinations were in order to relate their pK a values with their bioavailability and to provide chemical data to be used in their analysis.  相似文献   

18.
Xerogels consisting of SiO2 and TiO2 were explored for controlled release of brilliant blue FCF (BBF). Both SiO2 and SiO2–TiO2 xerogels were prepared by way of sol–gel processing, and the BBF release behavior was compared. SiO2–TiO2 xerogels with varying TiO2 content were also studied and the BBF release behavior was determined for each SiO2–TiO2 xerogel. It was found that the release of BBF from SiO2 xerogels can be increased by the addition of TiO2 content, and the amount and rate of BBF released from the SiO2–TiO2 xerogels can be changed by modifying the amount of TiO2 included during the preparation of the xerogels, where the SiO2–TiO2 xerogels with a higher content of TiO2 released a higher fraction of BBF in water media when compared to the release from SiO2–TiO2 xerogels with lower amounts of TiO2. The experimental results have to be explained by a combination of porous structure, in situ dissolution–condensation during the BBF elution and the change of surface chemistry of the xerogel network with the addition of TiO2.  相似文献   

19.
Composite of Co3O4 nanorods with reduced graphene oxide (RG-Co3O4) for rechargeable zinc-air battery was prepared by a facile method. The Co3O4 nanorods with a length of 1–2 μm were homogeneously distributed on the surface of plicated graphene nanosheets. The samples were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectroscopy. The RG-Co3O4 composite showed better electrode potential and higher electrical conductivity compared with pure Co3O4. The zinc-air battery can be reversibly charged and discharged for hundred cycles with a good cycle performance. The improved battery performance of RG-Co3O4 can be attributed to the synergistic coupling effect between the graphene sheets and Co3O4.  相似文献   

20.
A series of Ni–La/γ-Al2O3 catalysts were prepared by adopting the methods of isometric impregnation and microwave impregnation. The catalysts were characterized with XRD, BET, and SEM, respectively. Inspecting the effects of adding La and the methods of impregnation on the hydrogenation activity of catalysts. The results show that adding a moderate amount of La promotes the dispersing of Ni on the carrier, the methods of microwave impregnation weaks the interaction between Ni and the carrier further, inhibits the formation of NiAl2O4, and the activity of catalyst prepared by the methods of microwave impregnation was significantly higher than that prepared by the methods of isometric impregnation. The hydrogenation activity of the Ni–La/γ-Al2O3 (WB) dipped with n(Ni): n(La) = 4: 1, microwave irradiation time 30 min with power 600W as well as calcined at 400°C exhibited the best performance. The conversion rate is 91.21% with reaction conditions: T = 160°C, p = 0.8 MPa, air speed 5 h–1, n(H2): n(benzene) = 2: 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号