首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the polymerization of phenyl isocyanides with the chiral palladium(II) initiating system. The resulting polymers with optically active properties were obtained by polymerization of the racemic isocyanide monomer(rac-1), and enantiomerically unbalanced polymerization of the monomer was found, providing substantial evidence for the enantiomer-selective polymerization of rac-1 mediated through chiral catalyst. A comparison between the enantiomerically pure monomers, 4-isocyanobenzoyl-L-alanine decyl ester(1 s) and 4-isocyanobenzoyl-D-alanine decyl ester(1 r), revealed a drastic discrepancy in the reactivity ratio of their homopolymerizations.It turned out that the monomer reactivity ratio of 1 s was higher than that of 1 r with chiral ligands. The results clearly demonstrated the inclination for incorporation of the 1 s enantiomer during the polymerization process and thus resulted in the enantiomer-selective polymerization in this system. The effects of the catalyst chirality on the optically active properties of polymerization were investigated,and it was concluded that the formation of higher-ordered conformation with a handed helicity might be attributed to the chiral induction of chiral palladium(II) catalyst. Moreover, the polymers obtained through the enantiomer-selective polymerization of the enantiomerically pure monomer were with a significant improvement of the optical activity if the chirality of the monomer and the catalyst matched with each other.  相似文献   

2.
Alkyl aluminum complexes of chiral salan ligands assembled around the 2,2′‐bipyrrolidine core form as single diastereomers that have identical configurations of the N donors. Active catalysts for the polymerization of lactide were formed upon the addition of benzyl alcohol. Polymeryl exchange between enantiomorphous aluminum species had a dramatic effect on the tacticity of the poly(lactic acid) (PLA) in the polymerization of racemic lactide (rac‐LA): The enantiomerically pure catalyst of the nonsubstituted salan ligand led to isotactic PLA, and the racemic catalyst exhibited lower stereocontrol. The enantiomerically pure catalyst of the chloro‐substituted salan ligand led to PLA with a slight tendency toward heterotacticity, whereas the racemic catalyst led to PLA of almost perfect heterotacticity following an insertion/auto‐inhibition/exchange mechanism.  相似文献   

3.
The syntheses of optically active polymers having helical conformation from bulky methacrylates are reviewed focusing on selected topics. The monomers include triphenylmethyl methacrylate and its analogues. Asymmetric anionic polymerization of the monomers gives isotactic, optically active polymers having a helical structure with excess helicity. The isotactic content and the extent of helical‐sense excess depend on the monomer structure and the reaction conditions. In the case of methacrylates, completely isotactic and single‐handed helical polymers can be produced by asymmetric anionic polymerization (helix‐sense‐selective polymerization). Asymmetric radical polymerization is also possible for this class of monomer. Some of the helical polymers show chiral recognition ability toward a wide range of racemic compounds. Polymers having main‐chain configurational chirality are also discussed.  相似文献   

4.
The reaction of enantiomerically pure planar chiral ferrocene phosphine thioether with bis(acetonitrile)dichloridopalladium yields the title square‐planar mononuclear palladium complex as an enantiomerically pure single diastereoisomer, [PdFe(C5H5)(C20H20PS)Cl2]. The planar chirality of the ligand is retained in the complex and fully controls the central chirality on the S atom. The absolute configuration, viz. S for the planar chirality and R for the S atom, is unequivocally determined by refinement of the Flack parameter.  相似文献   

5.
[reaction: see text] A diastereoselective coupling of propargylic oxiranes with terminal alkynes has been developed with use of a palladium catalyst. The stereochemistries of the resulting 4-alkynyl-substituted 2,3-allenols have been altered depending on the palladium catalyst. An optically active anti-substituted allene was synthesized from the reaction of an enantiomerically enriched propargylic oxirane without loss of chirality.  相似文献   

6.
The synthesis, characterization, and ring‐opening polymerization of a new cyclic carbonate monomer containing an allyl ester moiety, 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC), was performed for the first time. MAC was synthesized in five steps in good yield beginning from the starting material, 2,2‐bis(hydroxymethyl)propionic acid. Subsequent polymerization and copolymerizations of the new cyclic carbonate with rac‐lactide (rac‐LA) and ?‐caprolactone (CL) were attempted. Rac‐LA copolymerized well with MAC, but CL copolymerizations produced insoluble products. Oligomeric macroinitiators of MAC and rac‐LA were synthesized from stannous ethoxide, and both macroinitiators were used for the controlled ring‐opening polymerization of rac‐LA. The polymerization kinetics were examined by monitoring the disappearance of the characteristic C? O ring stretch of the monomer at 1240 cm?1 with real‐time in situ Fourier transform infrared spectroscopy. Postpolymerization oxidation reactions were conducted to epoxidize the unsaturated bonds of the MAC‐functionalized polymers. Epoxide‐containing polymers may allow further organic transformations with various nucleophiles, such as amines, alcohols, and carboxylic acids. NMR was used for microstructure identification of the polymers, and size exclusion chromatography and differential scanning calorimetry were used to characterize the new functionalized poly(ester‐carbonates). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1978–1991, 2003  相似文献   

7.
Helical macromolecules which are configurationally and conformationally specific can now be synthesized. Monomer structures must be selected that demand spacial restriction for monomer addition. High specificity of monomer addition during polymerization has parallels in crystallization of some inorganic salts from aqueous solution. Initiation of highly specific polymerizations with chiral initiators give helical polymers with substantial one-handedness. Nucleation of certain inorganic salts with chiral nucleating agents, the enantiomers of the salts produce enantiomerically pure chiral salts.  相似文献   

8.
A chiral diamine alkaloid, (−)-sparteine (Sp), has been found to be very effective as a ligand for Grignard reagents when used for the enantiomer-selective polymerization of racemic RS-1-phenylethyl methacrylate. The enantiomeric excess of the initially polymerized monomer is 93%, and at about a 60% conversion, nearly optically pure R-monomer is recovered. This enantiomer selectivity is today the highest in polymer chemistry. Triphenylmethyl methacrylate (TrMA) is a unique monomer that gives a highly isotactic polymer even during radical polymerization. When TrMA is polymerized with the Sp complex with n-butyllithium in toluene at −78 °C, an optically active, isotactic polymer [poly(triphenylmethyl methacrylate) (PTrMA)] with a one-handed helical conformation is obtained. The helical structure is maintained even at room temperature in solution. Analogous helical polymethacrylates that show various conformational changes have also been found. One-handed helical PTrMA exhibits high chiral recognition to a variety of racemates as a chiral stationary phase (CSP) for high-performance liquid chromatography. This finding has led to the development of very powerful CSPs based on polysaccharides, such as cellulose and amylose. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4480–4491, 2004  相似文献   

9.
The copolymerization of ethylene with propylene in the liquid propylene initiated by ansa-metallocenes of the C 1 symmetry, rac-[1-(9-η5-fluorenyl)-2-(5,6-cyclopenta-2-methyl-1-η5-indenyl)ethane]zirconium dichloride and rac-[1-(9-η5-fluorenyl)-2-(5,6-cyclopenta-2-methyl-1-η5-indenyl)ethane]hafnium dichloride, activated by methylaluminoxane has been studied. Triisobutylaluminum has been used as a cocatalyst. The propylene-ethylene copolymers thus prepared contain 5–60 mol % ethylene units. The reactivity ratios have been measured. In the case of the zirconocene-based catalyst, the molecular mass of the copolymers decreases with an increase in the content of ethylene units. The reverse situation is observed in the case of the hafnocene-based catalytic system. The copolymers are characterized by the low T g values (down to ?45°C). Incorporation of a small amount of ethylene units (5 mol %) results in a rise in the elastomeric behavior of the polymers.  相似文献   

10.
A preparative synthesis of novel bioxepines and bi[10]paracyclophanes with meso- and rac-configuration is described. The bi[10]paracyclophane (−)-6b with two elements of planar chirality and one chiral axis has been obtained in enantiomerically pure form. Its absolute configuration was determined by quantum chemical calculation of the circular dichroism and comparison with the experimental CD spectrum.  相似文献   

11.
Cellulose was acylated by N-phthaloyl amino acid chlorides in the presence of pyridine to prepare an original library of cellulose N-phthaloyl-amino acid esters as chiral solid supports for enantioselective adsorption of racemates. Cellulose esters derived from N-phthaloyl glycine, alanine, valine, leucine, phenylalanine, phenylglycine and isoleucine were isolated in high yields and with degrees of substitution approaching 3. Interestingly, the use of an optically pure (d or l) or a rac-amino acid led to the same cellulose ester according to (1) the measured optical rotation, (2) the enantiomeric excesses of the amino acids resulting from a non-racemising and total hydrolysis and (3) the enantioselective adsorptions of rac-benzoin, rac-Pirkle’s alcohol and rac-Tröger’s base. This suggests that either the formation of a prochiral ketene intermediate which was diastereoselectively attacked by the cellulose alcohols or, alternatively (or concomitantly), the occurrence of a chiral induction in the formed triesters during prolonged contact with the pyridine base in the reaction medium. Enantiomeric excesses in favour of the (S) form ranged from 8 % to 50 % depending on the N-phthaloyl amino acid. The memory of the chirality of the starting material was lost and new chirality was imprinted by the cellulose backbone on the amino acid residues.  相似文献   

12.
Doubly fuctionalized polar norbornenes bearing the cyano and ester groups in 2,3‐positions are synthesized and enantiomers are separated by high performance liquid chromatography (HPLC) with a chiral stationary phase. These optically active monomers are polymerized by ruthenium carbene catalysts, and high yields of the polymers were obtained. The chiral monomer bearing ethyl ester gave an optically active polymer of lower, but opposite sign of optical rotation (monomer [α]D = +61.0°, polymer [α]D = ?3.1°). The circular dichroism (CD) of the obtained chiral polymers gave a Cotton effect. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 485–491, 2010  相似文献   

13.
The organopalladium complex containing ortho-metalated (S)-[1-(dimethylamino)ethyl]naphthalene as the chiral auxiliary has been used as the chiral template to promote the asymmetric cycloaddition reaction between phenyldivinylphosphine and 3,4-dimethyl-1-phenylarsole. The reaction was completed in 1 h at room temperature, with the formation of two isomeric cycloadducts in the ratio 1:3. The major phenylvinylphosphino-substituted asymmetrical hetero-bidentate arsanorbornene ligand with chirality residing on both As and P centers was obtained stereoselectively on the chiral palladium template in moderate yield. The chiral heterobidentate ligand was isolated in its enantiomerically pure form by removal of the chiral auxiliary using concentrated hydrochloric acid and subsequent cleavage from the neutral complex [(As–P)PdCl2] by using potassium cyanide. Similar to the earlier reported analogous diphenylphosphino-substituted asymmetrical heterobidentate arsanorbornene (As–P) ligand, an arsenic elimination process was also found in the dichloro and dibromo palladium complex whereas the diiodo species did not show similar reactivity, but the corresponding η2 diiodo complex could be obtained from the η2 dibromo complex by treatment with sodium iodide.  相似文献   

14.
Polyesters and poly(ester carbonates) were synthesized via ring‐opening polymerization with new tin(II) macroinitiator adducts containing oligomeric L ‐lactide (LLA), rac‐lactide (rac‐LA), and ?‐caprolactone (CL). The novel initiating species were synthesized by the reaction of LLA, rac‐LA, or CL with Sn(OEt)2 (monomer concentration/initiator concentration ≤20) and then were dissolved in methylene chloride or toluene and stored in a stoppered flask for the subsequent ring‐opening polymerization of cyclic esters and carbonates. The soluble tin alkoxide macroinitiators yielded predictable and quantitative initiation of polymerization for up to 1 month of storage time at room temperature. The resulting polymers displayed low polydispersity (≤1.5), and a high monomer conversion (>95%) was obtained within relatively short polymerization times (≤2 h). Adjusting the monomer/macroinitiator ratio effectively controlled the molecular weights of the polymers. NMR was used to characterize the initiating species and polymer microstructure, and size exclusion chromatography was used to determine the molecular weight properties of the polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3434–3442, 2002  相似文献   

15.
Three optically active phenylacetylene polymers with chiral bulky pinanyl groups, (?)‐poly[4‐(dimethylpinanylsilyl)phenylacetylene] [(?)‐poly(PSPA)], (+)‐poly{4‐[3‐(10‐pinanyl)tetramethyldisiloxy]phenylacethylene} [(+)‐poly(PDSPA)], and their copolymer [(?)‐copoly(PSPA/PDSPA)], were synthesized. We observed high chirality in the main‐chain chromophore of (?)‐poly(PSPA), due to the presence of a chiral helix, with circular dichroism spectroscopy. In contrast, (+)‐poly(PDSPA),with flexible SiOSi spacers between the chiral pinanyl group and the main chain, had lower chirality. (?)‐Poly(PSPA), with large circular dichroism signals, was prepared by polymerization with a rhodium catalyst and had a highly stereoregular main chain (high cis‐configuration percentage). However, (?)‐poly(PSPA) prepared with a tungsten catalyst had lower chirality and lower stereoregularity in the main chain. A membrane from (?)‐poly(PSPA) showed enantioselective permeability for tryptophan in an aqueous solution. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1689–1697, 2002  相似文献   

16.
The dynamic kinetic resolution (DKR) of rac-1-tert-butoxypropan-2-ol with isopropenyl acetate in the presence of Novozyme 435 and a ruthenium catalyst produces enantiomerically pure (R)-1-tert-butoxy-2-acetoxy-propane (>99.5 %ee) in a good yield. The product can be easily transformed into (R)-propane-1,2-diol without loss of stereoselectivity. Together with recently published procedures, the herein described DKR offers the possibility to use any lactide source as starting material for the production of (R)-propane-1,2-diol. The chiral diol may serve as the chiral building block for the synthesis of important enantiopure esters, like propylene carbonate, chiral polymers, etc.  相似文献   

17.
Novel sets of helical poly(phenylacetylene)s bearing a chiral ruthenium (Ru) complex with opposite chirality (Δ and Λ forms) as a bulky pendant (poly- 1 and poly- 2 ) were synthesized through the polymerization of the corresponding optically pure phenylacetylenes with a rhodium catalyst, and their structures in solution and morphology on solid substrates were investigated with NMR, ultraviolet–visible, and circular dichroism (CD) spectroscopies and with atomic force microscopy (AFM), respectively. The obtained cis–transoidal polymers (poly- 1 and poly- 2 ) showed characteristic Cotton effects in the region of metal-to-ligand charge transfer of the chiral Ru pendants. Poly- 1 and poly- 2 were thought to have a predominantly one-handed helical conformation induced by the chiral pendants. However, the apparent Cotton effects derived from the helically twisted π-conjugated polymer backbone could not be observed, probably because of the strong chiral chromophoric pendants. However, in the AFM images, the helical polymers adsorbed on mica could be easily discerned as isolated strands, and the visualization and discrimination of the right- and left-handed helical structures of the chiral polymers were achieved by high-resolution AFM imaging. On the basis of the AFM observations together with the CD measurements and computational calculation results, possible structures of poly- 1 and poly- 2 were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4621–4640, 2004  相似文献   

18.
Asymmetric selective (or stereoelective) polymerization of racemic 1,2-diphenylethyl methacrylate (DPEMA) with ethylmagnesium bromide (EtMgBr)-(?)-sparteine catalyst was studied in toluene at ?78°C. In the polymerization (S) enantiomer was consumed preferentially and the enantiomeric excess of initially polymerized (S) enantiomer was consumed preferentially and the enantiomeric excess of initially polymerized DPEMA was greater than 90%. Optically pure (R) monomer was recovered at about 70% polymer yield. Poly(DPEMA) obtained with EtMgBr-(?)-sparteine complex was highly isotactic. It was found in the polymerization of optically active DPEMA that optical rotation of poly(DPEMA) was dependent on the tacticity and that isotactic and syndiotactic poly(DPEMA)s showed opposite optical rotations. Circular dichroism spectra of the optically active polymers were measured.  相似文献   

19.
The rate of hydrolysis of esters derived from optically active α-amino acids, catalyzed by chiral cyclopalladated benzylamines, depends on the configuration of chiral centers in the substrate and catalyst. The catalytic hydrolysis of sulfur-containing amino esters follows an intramolecular mechanism, and the difference in the reaction rates for the stereoisomers increases in going from ortho-palladated primary benzylamines (k S/k R = 1.1) to tertiary amines (k S/k R = 1.5); the strongest catalytic effect is observed for an ester and a complex with the same absolute configuration of the chiral centers. The efficiency of intermolecular catalysis is greater for a complex and ester with opposite absolute configurations of the chiral centers, and the rate constants of catalytic hydrolysis for two pairs of stereoisomers coincide within experimental error. The maximal difference in the reaction rates is observed for cyclopalladated secondary benzylamines; it reaches 2.3 for the phenylalanine ester.  相似文献   

20.
The optically active urobilin model compound 7 was synthesized, in which Me groups instead of H-atoms are bound to the asymmetric centers, thus preventing loss of chirality by tautomerization. The key intermediate of the eleven-step synthesis of 7 is the 1,4,5,10-tetrahydro-10-hydroxy-1-oxo-11H-dipyrrin-9-carboxylate rac- 2 , which could be resolved into enantiomers by fractional crystallization of the corresponding methyl N-[1-(naphth-1-yl)ethyl]carbamates 3 and 4 . The absolute configuration of enantiomerically pure (?)- 2 was determined by X-ray diffraction analysis of its camphor-10-sulfonate 5 . As the CD spectrum of the urobilin analogue 7 obtained from (?)-(R)- 2 displays a positive Cotton effect, the present results prove, in connection with previous work, that substitution of Me groups for the H-atoms bound to the asymmetric centers of a chiral urobilin chromophore do not influence the relationship between absolute configuration of the latter and its helicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号