首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the near vicinity of Peierls transition temperature TP, we have measured the V-I characteristics of the quasi-one-dimensional conductor TaS3 under dark and photo-irradiation conditions. It is found that a significant enhancement of CDW current occurs only around the threshold voltage Vt under photo-irradiation. This effect can be interpreted as a result of screening of pinning potential for CDW condensate by photo-excited quasi-particles (QP's). Further the distribution of pinning potential intensity is reflected in the behavior of V-I characteristics near Vt. Our finding suggests that the strength of pinning potential can be controlled by the photo-excited QP's in quasi-1D conductors.  相似文献   

2.
The low electric field ohmic resistance R of orthorhombic TaS3 measured at 90 and 120 K well below the Peierls transition temperature depends on the product of a temperature difference ΔT applied along the sample and the sign of a previously applied current pulse if this pulse is larger than threshold for non-ohmic conductivity. This resistance change is about ΔR/RΔT ∽ 1×10-3 K-1 for a pure sample and ΔR/RΔT ∽ 6×10-3 K-1 for a slightly electron irradiated one at 90 K. The relative resistance change is insensitive to the sample length. We deduce that the CDW current changes inhomogeneously the Peierls gap Eg. ΔEg < O at the contact where the CDW current enters and ΔEg > O at the exit. The effect is attributed to a CDW current induced inhomogeneous deformation of the CDW itself.  相似文献   

3.
We report on the linear and nonlinear conductivity measurements on charge-ordered La1?xCaxMnO3 (x≈0.5 and x=0.75). Upon cooling below room temperature, the onset of charge ordering—Tco is marked by a peak in the logarithmic derivative of the resistivity (d ln ρ/d(1/T)) and by a change in the slope of the thermopower as a function of temperature. The IV characteristics of samples with negative coefficient of resistivity (x=0.52 and 0.75) was measured by DC and pulsed currents. We show how the nonlinearity of the IV characteristics vanishes when short, single current pulses are used. This work shows that when searching for dramatic phenomena such as sliding charge density waves in samples with negative temperature coefficient of resistivity, the first step should be to check if the IV nonlinearity persists when using single, short current pulses.  相似文献   

4.
《Physics letters. A》2002,305(6):433-436
The effect of a transverse single-particle current (Ix) on the charge-density wave (CDW) dynamics in the blue bronze K0.3MoO3 was reported. We found that the modulation of IV characteristics are asymmetric to the polarity of the transverse current, possibly due to an additional longitudinal electric field (Eadd) caused by the slight unbalance of the two transverse current probes. Our result seems inconsistent in some ways with the recent study by Artemenko et al.  相似文献   

5.
6.
The nonlinear I-V characteristic (V(I)) of YBa2Cu3O7−x single crystal was investigated near the transition from the resistive to the superconducting state in the absence of a magnetic field. A modulation Fourier analysis at temperature T* (the maximum of the amplitudes of the higher (n>1) harmonics of the response voltage) was used to determine an analytic dependence V(I) which accurately describes the experimental results (direct measurements and harmonics) in the range of currents I<30 mA (j<310 A/cm2). It is shown that at T* the power approximation of the I-V characteristic V∼I 3 is only found in the low current density limit (jj 0=140 A/cm2). The results are interpreted in terms of the Kosterlitz-Thouless (KT) transition model. It is established that T* corresponds to the temperature of the KT transition T KT, which means that T KT can be determined directly. The deviation of V(I) from a power dependence is caused by the nonlogarithmic variation of the vortex interaction energy as a function of the distance between them. Fiz. Tverd. Tela (St. Petersburg) 40, 202–204 (February 1998)  相似文献   

7.
The current-voltage characteristics of Cu-K0.3MoO3 point contacts between a metal and a semiconductor with a charge density wave (CDW) are studied for various diameters of the contacts in a wide range of temperatures T and voltages V. In the interval 80 K ? T ? 150 K, the current-voltage characteristics are correctly described in the framework of a semiconductor model: screening of an external electric field causes CDW deformation, shifts the chemical potential of quasiparticles, and changes the point contact resistance. It is shown that the chemical potential is above the middle of the Peierls gap in equilibrium and approaches the middle upon an increase in temperature. The current-voltage characteristics of point contacts with a diameter d ? 100 Å exhibit a sharp decrease in resistance for |V| > V t , which is associated with the beginning of local CDW sliding within the contact region. The V t (d, T) dependence can be explained by the size effect in the CDW phase slip.  相似文献   

8.
The charge conduction properties of the Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) were investigated using current–voltage–temperature (IVT) measurements in dark and under various illumination levels. For this purpose, the main diode parameters such as reverse-saturation current (Io), zero-bias barrier height (ΦBo), ideality factor (n), series resistance (Rs) and shunt resistance (Rsh) of diode were obtained as function of temperature and illumination level. Experimental results show that all of these electrical parameters are strong functions of illumination and temperature. The change in all electrical parameters becomes more important at low temperatures and illumination levels. While the n value decreases with increasing temperature and illumination level, ΦBo value increases. The fill factor (FF = Vm·Im/Voc·Isc) values were obtained as 0.34 at 80 K and 0.40 at 320 K under 50 W and these values are near to a photodiode. Therefore, the fabricated diode can be used as a photodiode in optoelectronic applications. The forward bias IV characteristics of the diode have also been explained by the space charge limited current (SCLC) model.  相似文献   

9.
From the I-V characteristics for as-grown and irradiated Bi2Sr2CaCu2O8+δ single crystals at T=5 K in a magnetic field applied parallel to the c axis, we have seen two types of vortex dynamics near the depinning threshold. For the as-grown sample, at low field, the I-V curves show steps that clearly indicate a “fingerprint phenomenon” since they reflect the current dependence of differential resistance Rd=dV/dI. This can be ascribed to vortices flow through uncorrelated channels for the highly defective lattice. As fields sufficiently increase, these peaks merge, giving broader ones, indicating a crossover from filamentary strings to braid river. In contrast, in the irradiated sample, the pinning is found to be individual at low magnetic fields and collective when the vortex-vortex interactions are involved. Our result suggests a dynamic nature of the peak effect, in agreement with recent numerical simulations and experimental works.  相似文献   

10.
Depending on the temperature, the charge density wave (CDW) nonlinear conductivity of the blue bronzes A0.30MoO3 (A=K, Rb) shows two different regimes: a strongly damped motion above ∼50 K and motion with almost no damping below ∼50 K. In a search for an elastic signature of this CDW behaviour, we performed ultrasonic measurements on Rb0.30MoO3 and Rb0.30(Mo1−xVx)O3 single crystals between 4 K and 300 K. In Rb0.30MoO3, at T∼50 K, upon cooling, a large increase of the sound velocity is observed. The ultrasonic attenuation coefficient shows an increase down to 50 K followed by a plateau. In Rb0.30(Mo1−xVx)O3 (x=0.4 at%) the anomaly broadens and is shifted towards higher temperatures. The results are discussed in terms of CDW glass.  相似文献   

11.
A study of electrical conduction in orthorhombic TaS3 has revealed the existence of thermal hysteresis throughout the temperature range 55 K < T < 205 K. This is attributed to variability in the wavevector q of the charge-density wave (CDW) which develops below Tp = 215 K, and confirms the recent finding, from electron diffraction, that at temperatures not too far below Tp the CDW is incommensurate with the underlying lattice. Evidence that q becomes commensurate, at least along the chain direction at 55 K is provided by the vanishing of hysteresis at that temperature, and also by a rise in the threshold field for continuous motion of the CDW.From its dependence on temperature it is concluded that between Tp and 55 K the conduction in the linear regime is better described as that of a Peierls semi-metal, rather than that of a Peierls intrinsic semiconductor. At most temperatures within that range electrical hysteresis also is observed, and a detailed study of this leads to the tentative conclusion that translation of the CDW conveys negative charge, carried presumably by negatively-charged discommensurations. The mechanisms of conduction below 55 K remain uncertain.  相似文献   

12.
Charge density wave (CDW) depinning and sliding regimes have been studied in NbSe3 at low temperatures down to 1.5 K under magnetic field of 19 T oriented along the c-axis. We found that the threshold field for CDW depinning becomes temperature independent below T 0 ≈ 15 K. Also CDW current to frequency ratio characterizing CDW sliding regime increases by factor 1.7 below this temperature. The results are discussed as a crossover from thermal fluctuation to tunneling CDW depinning at T < T 0. Besides, we found that CDW sliding strongly suppresses the amplitude of Shubnikov-de Haas oscillations of magnetoresistance.  相似文献   

13.
Temperature dependence (3–300 K) of the electrical conductivity in a number of amorphous Zr1?xMx alloys (M = Cu, Ni, Co and Fe, 0.19 < x < 0.71) has been analysed in some detail. Like in some other alloys with a high electrical resistivity, the conductivity varies as T at lower temperatures (T < 80 K) and √T at higher temperatures. A new feature observed is that the ratio of the coefficients of a low temperature T and a high temperature √T conductivity variation is practically constant for allalloys. Therefore a universal conductivity-temperature curve can be constructed for all amorphous Zr1?xMx alloys with the resistivity higher than 150 μohms cm. These results are consistent with the effects of incipient localisation and indicate that the electron-phonon coupling determines the conductivity variation.  相似文献   

14.
Characterization of the (76V2O5-24P2O5)1−X (Li3PO5)X, where X=0.0,0.01,0.02,0.10 and 0.15, glass has been done using X-ray diffraction and differential thermal analysis (DTA). The dc conductivity of the glass samples was studied over a temperature range from 300 to 593 K. The temperature dependence of dc conductivity shows two regions. One at relatively high temperature range, above θD/2, and the other at relatively low temperature range, below θD/2. The I-V characteristics of the glasses have been studied as a function of both temperature and Li3PO4 content. The I-V characteristics exhibits threshold switching with differential negative resistance. It's found that both the threshold voltage (Vth) and threshold current (Ith) are dependent on the temperature and lithium phosphate concentration.  相似文献   

15.
Stationary Josephson current I c in symmetric and non-symmetric junctions involving d-wave superconductors with charge density waves (CDWs) was calculated. It was found that, if CDWs are weak or absent, there exists an approximate proportionality between I c and the product of superconducting order parameters in the electrodes (the law of corresponding states) for several factors affecting those quantities, such as the temperature, T, or one of the parameters characterizing the combined CDW superconducting phase (the degree of the Fermi surface dielectric gapping and the ratio between the parent superconducting and CDW order parameters). Otherwise, the dependences I c (T) were shown to deviate from those in the absence of CDWs, and the relevant corresponding-state dependences from linearity, the deviations being especially strong at certain rotation angles of crystalline electodes with respect to the junction plane. Hence, making use of specially designed experimental setups and analyzing the I c (T) and corresponding-state dependences, the existence of CDWs in cuprates and other non-conventional superconductors can be detected.  相似文献   

16.
The chain-like ZrTe3 compound undergoes a charge-density-wave (CDW) transition at TCDW=63 K, most strongly affecting the conductivity perpendicular to the chains. We measure the temperature (T) dependence of the optical reflectivity from the far infrared up to the ultraviolet with polarized light. The CDW gap Δ(T) along the direction perpendicular to the chains is compatible for T<TCDW with the behavior of an order parameter within the mean-field Bardeen-Cooper-Schrieffer (BCS) theory. Δ(T) also persists well above TCDW, which emphasizes the role played by fluctuation effects.  相似文献   

17.
The current–voltage (IV) characteristics of individual nanofibres of lightly-doped polyacetylene show very strong nonlinearities. At low temperatures the IV characteristics are consistent with Zener-type tunnelling, and independent of temperature and magnetic field. We propose that this behaviour arises from tunnelling of a segment of the conjugated bond system in the presence of an electric field, in analogy to the soliton-pair creation mechanism proposed by Maki for conduction in charge-density-wave (CDW) materials. A comparison is made with analogous tunnelling conduction mechanisms reported in CDW and spin-density-wave systems at low temperatures. At higher temperatures the IV characteristics deviate from Zener-type behaviour and are temperature dependent, so other conduction mechanisms are important.  相似文献   

18.
茹国平  俞融  蒋玉龙  阮刚 《中国物理 B》2010,19(9):97304-097304
This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I--V--T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage Vj, excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, Vj needs to be smaller than the barrier height Ф. With proper scheme of series resistance connection where the condition of Vj > Ф is guaranteed, I--V--T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I--V--T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I--V--T curves only for small barrier height inhomogeneity.  相似文献   

19.
Zinc oxide (ZnO) nanowires have been synthesized by using tubular furnace chemical vapor deposition technique. The morphology, chemical composition and crystal structure of as-synthesized ZnO nanowires were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) techniques. Four-terminal current-voltage (I-V) measurements were employed to study the electrical conductance of ZnO nanowires under various testing gas environments for gas sensing purpose. The I-V curves at temperature ranging from 150 to 300 K were recorded in the testing chamber under vacuum. The Arrhenius plot shows perfect linear relationship between the logarithm of the current I and inverse temperature 1/T. The donor level of the semiconducting nanowires is about 326 meV. The I-V behaviors were found to be reversible and repeatable with testing gases. The electrical conductivity was enhanced by a factor of four with ambient CO gas compared to that in vacuum and other testing gases. The optoelectronic properties of the ZnO nanowires were obtained by two-terminal I-V measurement method while the nanowires were illuminated by a ruby laser. The electrical conductivity was increased by 60% when the laser was present in comparison to that when the laser was off. Those significant changes suggest that nano-devices constructed by the ZnO nanowires could be used in gas sensing and optical switching applications.  相似文献   

20.
Details are given of the transient response of NbSe3 at 42 K to currents I(t) of various repetitive pulsed waveforms. Nonlinear conduction, due supposedly to motion of one of the two charge-density waves (CDWs) present, was measured as U(t) = IR0 ? V, where V(t) is the voltage developed across the specimen and R0 is its resistance in the Ohmic regime.With unidirectional pulses two threshold currents for nonlinearity were observed. On passing the lower threshold, a gradual rise (time-constant 50 μs) of U towards the d.c. value was seen; this behaviour was shown not to originate in the inertia of the CDW, and probably arose thermally. Only after the second threshold was passed did U appear to rise immediately current was applied. The existence of two thresholds accounts for a discrepancy between pulsed and d.c. measurements of conductivity noted by Brill et al. (1981), and also for a phenomenon previously attributed to “locking” between the two CDWs [6].When the pulses were alternately negative- and positive-going, |U| rose beyond its eventual (d.c.) value, towards which it subsequently decayed. A study of this “overshoot” phenomenon has shown the speciment to be left, after a current pulse, in a long-lived metastable state in which pinning stabilises some distortion of the CDW, presumably similar to that of which recent electron micrographs [11] appear to be evidence.A simple model, associating the overshoot with transitions between metastable states, adequately describes the conditions for its occurrence. However, the origin of the conduction associated with the moving CDW remains uncertain, both the Frohlich mechanism and a single-electron alternative finding some experimental support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号