首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone‐derived extracellular matrix (ECM) is widely used in studies on bone regeneration because of its ability to provide a microenvironment of native bone tissue. However, a hydrogel, which is a main type of ECM application, is limited to use for bone graft substitutes due to relative lack of mechanical properties. The present study aims to fabricate a scaffold for guiding effective bone regeneration. A polycaprolactone (PCL)/beta‐tricalcium phosphate (β‐TCP)/bone decellularized extracellular matrix (dECM) scaffold capable of providing physical and physiological environment are fabricated using 3D printing technology and decoration method. PCL/β‐TCP/bone dECM scaffolds exhibit excellent cell seeding efficiency, proliferation, and early and late osteogenic differentiation capacity in vitro. In addition, outstanding results of bone regeneration are observed in PCL/β‐TCP/bone dECM scaffold group in the rabbit calvarial defect model in vivo. These results indicate that PCL/β‐TCP/bone dECM scaffolds have an outstanding potential as bone graft substitutes for effective bone regeneration.  相似文献   

2.
In this study, synthesis and characterization of magnetic nanocarriers are reported for drug delivery based on the amphiphilic di‐block and tri‐block copolymers of poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) with surface modified super‐paramagnetite Fe3O4 nanoparticles (magnetic nanoparticles (MNPs)). The synthesized block copolymers (methoxy poly(ethylene glycol) (mPEG)–PCL and PCL–PEG–PCL) were characterized by Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), and their properties such as critical micelle concentration, hydrophilicity to lipophilicity balance, and hydrolytic degradation were investigated. The block copolymers were functionalized with terminal azide groups (mPEG–PCL(N3) and (N3)PCL–PEG–PCL(N3)), and magnetic Fe3O4 nanoparticles were surface modified with poly(acrylic acid) (PAA) and propargyl alcohol (MNP–PAA–C≡CH). Magnetic nanocarriers were synthesized by click reaction between azide‐terminated block copolymers and MNP–PAA–C≡CH and characterized by FT‐IR, thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM), and cytotoxicity was investigated by methyl thiazolyl tetrazolium assay. In vitro drug loading and release and release kinetics were investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Composite scaffolds of polymers/β-tricalcium phosphate (TCP) have been widely used for bone regeneration due to the combination of osteoinductivity of TCP and mechanical properties of the polymers. However, the difference in surface properties of the two material causes composite has poor uniformity and weak two-phase interaction, resulting in poor TCP release and weak new bone-forming ability. In this research, a TCP sol was developed to replace traditional TCP nanoparticles for the preparation of homogeneous polycaprolactone (PCL)/TCP sol nanofibrous scaffolds. It was found that compared with TCP nanoparticles, TCP sol homogeneously distributed in PCL nanofibers, and greatly improved the hydrophilicity, biodegradability, and mechanical properties of the scaffolds. It is also confirmed that loading TCP sol promoted the formation of bone-like apatite on the surface of the scaffolds. Biological experiments showed that all scaffolds supported rat bone marrow mesenchymal stem cells (rBMSCs) proliferation, especially scaffolds loaded with TCP sol. The increase in alkaline phosphatase activity and collagen production, enhanced calcium deposition, and up-regulation of osteocalcin expression demonstrated that the loading TCP sol expanded an advantage of scaffolds in promoting rBMSCs osteogenic differentiation, suggesting it dramatically improved the osteoinductive activity of PCL/TCP hybrid system and had a great potential application in bone regeneration.  相似文献   

4.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

5.
A new intracellular delivery system based on an apoptotic protein‐loaded calcium carbonate (CaCO3) mineralized nanoparticle (MNP) is described. Apoptosis‐inducing cytochrome c (Cyt c) loaded CaCO3 MNPs (Cyt c MNPs) were prepared by block copolymer mediated in situ CaCO3 mineralization in the presence of Cyt c. The resulting Cyt c MNPs had a vaterite polymorph of CaCO3 with a mean hydrodynamic diameter of 360.5 nm and exhibited 60 % efficiency for Cyt c loading. The Cyt c MNPs were stable at physiological pH (pH 7.4) and effectively prohibited the release of Cyt c, whereas, at intracellular endosomal pH (pH 5.0), Cyt c release was facilitated. The MNPs enable the endosomal escape of Cyt c for effective localization of Cyt c in the cytosols of MCF‐7 cells. Flow cytometry showed that the Cyt c MNPs effectively induced apoptosis of MCF‐7 cells. These findings indicate that the CaCO3 MNPs can meet the prerequisites for delivery of cell‐impermeable therapeutic proteins for cancer therapy.  相似文献   

6.
Neutrophils can responsively release reactive oxygen species (ROS) to actively combat infections by exogenous stimulus and cascade enzyme catalyzed bio‐oxidation. A supramolecular nanogel is now used as an artificial neutrophil by enzymatic interfacial self‐assembly of peptides (Fmoc‐Tyr(H2PO3)‐OH) with magnetic nanoparticles (MNPs) and electrostatic loading of chloroperoxidase (CPO). The MNPs within the nanogel can elevate H2O2 levels in cancer cells under programmed alternating magnetic field (AMF) similar to the neutrophil activator, and the loaded CPO within protective peptides nanolayer converts the H2O2 into singlet oxygen (1O2) in a sustained manner for neutrophil‐inspired tumor therapy. As a proof of concept study, both the H2O2 and 1O2 in cancer cells increase stepwise under a programmed alternating magnetic field. An active enzyme dynamic therapy by magnetically stimulated oxygen stress and sustained enzyme bio‐oxidation is thus shown with studies on both cells and animals.  相似文献   

7.
Here, we demonstrated the fabrication of a composite scaffold (chitosan [CS], collagen [Col], and hydroxyapatite [HA]) with the incorporation of encapsulated Cissus quadrangularis (CQ) extract for tissue engineering applications. First, the crude extract of CQ loaded nanoparticles were synthesized via double emulsion technique using polycaprolactone (PCL) and polyvinyl alcohol (PVA) as oil and aqueous phases, respectively. Both PCL (20, 40, and 80 mg/mL) and PVA (0.5%, 1%, and 3% w/v) concentrations were varied to determine the optimum concentrations for CQ‐loaded nanoparticle preparation. The CQ‐loaded PCL nanoparticles (CQ‐PCL NPs), prepared with 20 mg/mL PCL and 0.5% (w/v) PVA, exhibited the smallest size of 334.22 ± 43.21 nm with 95.54 ± 1.49% encapsulation efficiency. Then, the CQ‐PCL NPs were incorporated into the CS/Col/HA scaffolds. These scaffolds were also studied for their ultrastructure, pore sizes, chemical composition, compressive modulus, water swelling, weight loss, and biocompatibility. The results showed that the addition of CQ‐PCL NPs into the scaffolds did not dramatically alter the ultrastructure and properties of the scaffolds, compared to CS/Col/HA scaffolds alone. However, incorporation of CQ‐PCL NPs in the scaffolds improved the release profile of CQ by preventing the initial burst release and prolonging the release rate of CQ. In addition, the CQ‐PCL NPs‐loaded CS/Col/HA scaffolds supported the attachment and proliferation of MC3T3‐E1 osteoblast cells.  相似文献   

8.
Protein pharmaceuticals show great therapeutic promise, but effective intracellular delivery remains challenging. To address the need for efficient protein transduction systems, we used a magnetic nanogel chaperone (MC): a hybrid of a polysaccharide nanogel, a protein carrier with molecular chaperone‐like properties, and iron oxide nanoparticles, enabling magnetically guided delivery. The MC complexed with model proteins, such as BSA and insulin, and was not cytotoxic. Cargo proteins were delivered to the target HeLa cell cytosol using a magnetic field to promote movement of the protein complex toward the cells. Delivery was confirmed by fluorescence microscopy and flow cytometry. Delivered β‐galactosidase, inactive within the MC complex, became enzymatically active within cells to convert a prodrug. Thus, cargo proteins were released from MC complexes through exchange interactions with cytosolic proteins. The MC is a promising tool for realizing the therapeutic potential of proteins.  相似文献   

9.
We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single‐cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle–cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single‐cell activities without the need of complex magnetic manipulation devices.  相似文献   

10.
We described the curcumin‐loaded biodegradable polyurethane (PU) scaffolds modified with gelatin based on three‐dimensional (3D) printing technology for potential application of cartilage regeneration. The printing solution of poly(ε‐caprolactone) (PCL) triol (polyol) and hexamethylene diisocyanate (HMDI) in 2,2,2‐trifluoroethanol was printed through a nozzle in dimethyl sulfoxide phase with or without gelatin. The weight ratio of HMDI against PCL triol was varied as 3, 5, and 7 in order to evaluate its effect on the mechanical properties and biodegradation rate. A higher ratio of HMDI resulted in higher mechanical properties and a lower biodegradation rate. The use of gelatin increased the mechanical properties, biodegradation rate, and curcumin release due to the surface cross‐linking, nanoporous structure, and surface hydrophilicity of the scaffolds. In vitro study revealed that the released curcumin enhanced the proliferation and differentiation of chondrocyte. The 3D‐printed biodegradable PU scaffold modified with gelatin should thus be considered as a potential candidate for cartilage regeneration.  相似文献   

11.
Calcium phosphate materials are widely used as bone-like scaffolds or coating for metallic hip and knee implants due to their excellent biocompatibility, compositional similarity to natural bone and controllable bioresorbability. Local delivery of drugs or osteogenic factors from scaffolds and implants are required over a desired period of time for an effectual treatment of various musculoskeletal disorders. Curcumin, an antioxidant and anti-inflammatory molecule, enhances osteoblastic activity in addition to its anti-osteoclastic activity. However, due to its poor solubility and high intestinal liver metabolism, it showed limited oral efficacy in various preclinical and clinical studies. To enhance its bioavailability and to provide higher release, we have used poly (ε-caprolactone) (PCL), poly ethylene glycol (PEG) and poly lactide co glycolide (PLGA) as the polymeric system to enable continuous release of curcumin from the hydroxyapatite matrix for 22 days. Additionally, curcumin was incorporated in plasma sprayed hydroxyapatite coated Ti6Al4V substrate to study in vitro cell material interaction using human fetal osteoblast (hFOB) cells for load bearing implants. MTT cell viability assay and morphological characterization by FESEM showed highest cell viability with samples coated with curcumin-PCL-PEG. Finally, 3D printed interconnected macro porous β-TCP scaffolds were prepared and curcumin-PCL-PEG was loaded to assess the effects of curcumin on in vivo bone regeneration. The presence of curcumin in TCP results in enhanced bone formation after 6 weeks. Complete mineralized bone formation increased from 29.6% to 44.9% in curcumin-coated scaffolds compared to pure TCP. Results show that local release of curcumin can be designed for both load bearing or non-load bearing implants with the aid of polymers, which can be considered an excellent candidate for wound healing and tissue regeneration applications in bone tissue engineering.  相似文献   

12.
Magneto‐plasmonic Janus vesicles (JVs) integrated with gold nanoparticles (AuNPs) and magnetic NPs (MNPs) were prepared asymmetrically in the membrane for in vivo cancer imaging. The hybrid JVs were produced by coassembling a mixture of hydrophobic MNPs, free amphiphilic block copolymers (BCPs), and AuNPs tethered with amphiphilic BCPs. Depending on the size and content of NPs, the JVs acquired spherical or hemispherical shapes. Among them, hemispherical JVs containing 50 nm AuNPs and 15 nm MNPs showed a strong absorption in the near‐infrared (NIR) window and enhanced the transverse relaxation (T2) contrast effect, as a result of the ordering and dense packing of AuNPs and MNPs in the membrane. The magneto‐plasmonic JVs were used as drug delivery vehicles, from which the release of a payload can be triggered by NIR light and the release rate can be modulated by a magnetic field. Moreover, the JVs were applied as imaging agents for in vivo bimodal photoacoustic (PA) and magnetic resonance (MR) imaging of tumors by intravenous injection. With an external magnetic field, the accumulation of the JVs in tumors was significantly increased, leading to a signal enhancement of approximately 2–3 times in the PA and MR imaging, compared with control groups without a magnetic field.  相似文献   

13.
Electrospinning is one of most versatile process to fabricate porous scaffolds in biomedical field. Synthetic polymers such as polycaprolactone (PCL) and polymethyl methacrylate (PMMA) provide excellent properties for biomedical applications due to their biocompatibility and tunable mechanical properties. PCL-PMMA electrospun blends combine compressive/tensile properties of individual polymers as well as biocompatibility/biodegradability. Together with porosity of scaffold, drug/nutrient supply is required in tissue regeneration and healing. High pressure CO2 has been investigated to plasticize many biopolymers and impregnate drugs in scaffolds. This study explores several compositions of PCL-PMMA electrospun scaffolds for morphological and mechanical properties. These scaffolds are impregnated with hydrophilic (Rhodamine B) and hydrophobic (Fluorescein) dyes using high pressure CO2 and air plasma treatment. Furthermore, release profiles of dyes have been studied from thin films and porous scaffolds to understand several controlling factors for controlled release applications. Results show dye-polymer interactions, CO2 impregnation and stress relaxation of electrospun fibers are key factors in release profile from electrospun fibers. This study is a step forward in developing PCL-PMMA based electrospun scaffolds for drug delivery and tissue engineering.  相似文献   

14.
15.
Bone tissue engineering has become one of the most effective methods for treating bone defects. In this study, an electrospun tissue engineering membrane containing magnesium was successfully fabricated by incorporating magnesium oxide (MgO) nanoparticles into silk fibroin and polycaprolactone (SF/PCL)-blend scaffolds. The release kinetics of Mg2+ and the effects of magnesium on scaffold morphology, and cellular behavior were investigated. The obtained Mg-functionalized nanofibrous scaffolds displayed controlled release of Mg2+, satisfactory biocompatibility and osteogenic capability. The in vivo implantation of magnesium-containing electrospun nanofibrous membrane in a rat calvarial defect resulted in the significant enhancement of bone regeneration twelve weeks post-surgery. This work represents a valuable strategy for fabricating functional magnesium-containing electrospun scaffolds that show potential in craniofacial and orthopedic applications.  相似文献   

16.
Biadhesive peptides (peptesives) are an attractive tool for assembling two chemically different materials—for example, stainless steel and polycaprolactone (PCL). Stainless steel is used in medical stents and PCL is used as a biodegradable polymer for fabrication of tissue growth scaffolds and drug delivering micro‐containers. Biadhesive peptides are composed of two domains (e.g., dermaseptin S1 and LCI) with different material‐binding properties that are separated through a stiff peptide‐spacer. The peptesive dermaseptin S1‐domain Z‐LCI immobilizes antibiotic‐loaded PCL micro‐containers on stainless steel surfaces. Immobilization is visualized by microscopy and field emission scanning electron microscopy analysis and released antibiotic from the micro‐containers is confirmed through growth inhibition of Escherichia coli cells.  相似文献   

17.
Two different composite scaffolds, solid‐freeform‐fabricated PCL/β‐TCP supplemented with and without collagen nanofibers are fabricated. These scaffolds are evaluated whether a combination of collagen nanofibers with PCL/β‐TCP can promote osteogenesis in a mastoid obliteration. To assess the effects of the cellular activities of osteoblast‐like‐cells (MG63), SEM images and MTT assays are conducted. Experimental mastoid obliteration is performed using guinea pigs that are divided group A (PCL/β‐TCP/collagen‐nanofiber scaffold) and group B (PCL/β‐TCP scaffold). The results reveal that PCL/β‐TCP/collagen scaffold provide much broader cell attachment sites than PCL/β‐TCP scaffold. The µ‐CT and fluorescent microscopy results reveal that the acceleration of early new bone formation within the pores and scaffold itself at week 4 post‐operation is more effective in group A. In addition, based on the results of the histological and µ‐CT at 12 weeks post‐surgery, the effective regeneration of bone in the PCL/β‐TCP/collagen scaffold is appeared.

  相似文献   


18.
Despite the biocompatibility and osteoinductive properties of calcium phosphate (CaP) cements their low biodegradability hampers full bone regeneration. Herein the incorporation of CaP cement with hyaluronic acid (HAc) microparticles loaded with platelet lysate (PL) to improve the degradability and biological performance of the cements is proposed. Cement formulations incorporating increasing weight ratios of either empty HAc microparticles or microparticles loaded with PL (10 and 20 wt%) are developed as well as cements directly incorporating PL. The direct incorporation of PL improves the mechanical properties of the plain cement, reaching values similar to native bone. Morphological analysis shows homogeneous particle distribution and high interconnectivity between the HAc microparticles. The cements incorporating PL (with or without the HAc microparticles) present a sustained release of PL proteins for up to 8 d. The sustained release of PL modulates the expression of osteogenic markers in seeded human adipose tissue derived stem cells, thus suggesting the stimulatory role of this hybrid system toward osteogenic commitment and bone regeneration applications.

  相似文献   


19.
Ambroxol is a pharmacological chaperone (PC) for Gaucher disease that increases lysosomal activity of misfolded β‐glucocerebrosidase (GCase) while displaying a safe toxicological profile. In this work, different poly(ε‐caprolactone) (PCL)‐based systems are developed to regulate the sustained release of small polar drugs in physiological environments. For this purpose, ambroxol is selected as test case since the encapsulation and release of PCs using polymeric scaffolds have not been explored yet. More specifically, ambroxol is successfully loaded in electrospun PCL microfibers, which are subsequently coated with additional PCL layers using dip‐coating or spin‐coating. The time needed to achieve 80% release of loaded ambroxol increases from ≈15 min for uncoated fibrous scaffolds to 3 days and 1 week for dip‐coated and spin‐coated systems, respectively. Furthermore, it is proven that the released drug maintains its bioactivity, protecting GCase against induced thermal denaturation.  相似文献   

20.
Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of PCL-based composite scaffolds containing calcium phosphate-based ceramics and bioglasses in terms of porosity, degradation rate, mechanical properties, in vitro and in vivo biocompatibility and bioactivity for bone regeneration applications. The fabrication routes range from traditional methods such as solvent casting and particulate leaching to novel approaches including solid free-form techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号