首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Chemical force microscopy (CFM) was used to characterize the chemical heterogeneity of two commercially available nanofiltration and reverse osmosis membranes. CFM probes were modified with three different terminal functionalities: methyl (CH3), carboxyl (COOH), and hydroxyl (OH). Chemically distinct information about the membrane surfaces was deduced based on differences in adhesion between the CFM probes and the membrane surfaces using both traditional atomic force microscopy (AFM) force measurements and spatially resolved friction images. Contact angle titration and streaming potential measurements provided general information about surface chemistry and potential, which largely complemented the CFM analyses, but could not match the accuracy of CFM on the atomic level. Using CFM it was found that both membranes were characterized as chemically heterogeneous. Specifically, membrane chemical heterogeneity became more significant as the scan size approached colloidal or micron-sized dimensions. In many instances, the chemically unique regions, contributing to the overall chemical heterogeneity of the membrane surface, were substantially different in chemistry (e.g., hydrophobicity) from that determined for the surface at large from contact angel and streaming potential analyses. Topographical and corresponding CFM images supports previous adhesion studies finding a correlation between surface roughness and the magnitude of adhesion measured with AFM. However, chemical specificity was also significant and in turn measurable with CFM. The implication of these findings for future membrane development is discussed.  相似文献   

2.
Detailed mapping of surface chemistry with nanometer resolution has application throughout the physical and life sciences. The atomic force microscope (AFM) has provided a tool that, when using functionalised probes, is capable of providing chemical information with this level of spatial resolution. Here, we describe the technique of chemical force microscopy (CFM) and demonstrate the sensitivity of the technique using chemical force titrations against pH. We describe in detail the specific application of mapping the surface charge on natural hydroxyapatite from skeletal tissue and show that this new information leads to a better understanding of the binding of matrix proteins to the mineral surface.  相似文献   

3.
In this article, we present the results of a study on the surface properties of chromic acid-oxidized low-density polyethylene (LDPE) by scanning force microscopy (SFM) and contact angle measurements. LDPE films were surface modified by a chromic acid treatment with subsequent annealing in argon and reconstruction in boiling water as described by Rasmussen, Stedronsky, and Whitesides [J. Am. Chem. Soc., 99 , 4736 (1977)]. The LDPE oxidation in chromic acid was monitored in situ by contact mode SFM. Initially stacks of lamellae became exposed, and at later stages a granular morphology was observed. By tapping mode SFM, the sample roughness was shown to increase during the first 10 min of oxidation from initially ca. 20 nm to ca. 50 nm. Gold-coated SFM probes (tips) functionalized with self-assembled monolayers were used to determine the pull-off force characteristics in ethanol. Variations in the contact area between SFM tips and polymer surfaces that exposed sharp crystalline features were shown to obscure the results of pull-off force measurements. However, on annealed and subsequently reconstructed samples with lower roughness, the results of force measurements correlated well with the measured contact angles. Over the range of surface energies studied, the normalized pull-off force between carboxylic acid-modified tips and these smooth samples was shown to depend approximately linearly on the cosine of the contact angle. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2483–2492, 1998  相似文献   

4.
5.
Characterization of polymer coatings microstructure is critical to the fundamental understanding of the corrosion of coated metals. An approach for mapping the chemical heterogeneity of a polymer system using chemical modification and tapping‐mode atomic force microscopy (TMAFM) is demonstrated. This approach is based on the selective degradation of one of the phases in a multiphase polymer blend system and the ability of TMAFM to provide nanoscale lateral information about the different phases in the polymer system. Films made of a 70:30 polyethyl acrylate/polystyrene (PEA/PS) blend were exposed to a hydrolytic acidic environment and analyzed using TMAFM. Pits were observed to form in the PEA/PS blend films, and this degradation behavior was similar to that of the PEA material. Using these results, the domains in the 70:30 blend were identified as the PS‐rich regions and the matrix as the PEA‐rich region. This conclusion was confirmed by Fourier transform infrared‐attenuated total reflection analyses that revealed the hydrolysis of the PEA material. TMAFM phase imaging was also used to follow pit growth of the blend as a function of exposure time. The usefulness of the chemical modification/AFM imaging approach in understanding the degradation process of a coating film is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci B Part B: Polym Phys 39: 1460–1470, 2001  相似文献   

6.
Non-contact atomic force microscopy has been used to investigate the surface pore structure of Cyclopore and Anopore microfiltration membranes in air. Three Cyclopore membranes and three Anopore membranes of different pore sizes were studied. Excellent high resolution images were obtained. Analysis of the images gave quantitative information on the surface pore structure, in particular the pore size distribution. Non-contact AFM is an excellent means of obtaining such information for microfiltration membranes.  相似文献   

7.
The surface structures of two series of tetra-n-alkylammonium halides, N(CxH2×+1)4I and N(CxH2x+1)4 Br have been investigated with atomic force microscopy (AFM) and compared to hexatriacontane (C36H74). The surfaces could be imaged with atomic resolution. The observed primitive, square surface-patterns of tetra-n-butyl chloride and bromide are in good accord with x-ray single-crystal structure. For n > 4, x-ray powder diffraction showed that increasing the alkyl chain-length leads mainly to an appropriate increase of the unit cell along the c-axis, which suggests similar layer structures for all long-chain salts beyond the butyl homologue. Within the centers of the molecular layers of these crystals reside the halide anions and the quaternary nitrogens. The surfaces accessible for AFM consist of methyl end-groups. As the number of carbon atoms increases beyond four, the surface symmetry changes to the face-centered square patterns characteristic of many paraffins. The chains of the tetraalkyl ammonium salts pack, however, less dense than paraffins. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The technique of nanometer scale manipulation is very important in constructing nano-structures and nano-devices. By using atomic force microscope, three kinds of controllable manipulation on single-DNA molecules were introduced in the paper. DNA molecules deposited and extended on modified mica surface were first imaged by tapping mode, then cutting, bending, and pushing were respectively performed on single-DNA molecules. The results of the manipulation depend on the interaction between tip and DNA as well as between substrate and DNA.  相似文献   

9.
Coatings developed to reduce biofouling of engineered surfaces do not always perform as expected based on their native properties. One reason is that a relatively small number of highly adhesive sites, or the heterogeneity of the coated surface, may control the overall response of the system to initial bacterial deposition. It is shown here using an approach we call spectral force analysis (SFA), based on force volume imaging of the surface with atomic force microscopy, that the behavior of surfaces and coatings can be better understood relative to bacterial adhesion. The application of vapor deposited TiO2 metal oxide increased bacterial and colloid adhesion, but coating the surface with silica oxide reduced adhesion in a manner consistent with SFA based on analysis of the “stickiest” sites. Application of a TiO2-based paint to a surface produced a relatively non-fouling surface. Addition of a hydrophilic layer coating to this surface should have decreased fouling. However, it was observed that this coating actually increased fouling. Using SFA it was shown that the reason for the increased adhesion of bacteria and particles to the hydrophilic layer was that the surface produced by this coating was highly heterogeneous, resulting in a small number of sites that created a stickier surface. These results show that while it is important to manufacture surfaces with coatings that are relatively non-adhesive to bacteria, it is also essential that these coatings have a highly uniform surface chemistry.  相似文献   

10.
Surface topography of polished and blasted samples of a Ti6Al4V biomaterial has been studied using an atomic force microscope. Surface RMS roughness and surface area have been measured at different scales, from 1 to 50 μm, while at distances below 10 μm the surface RMS roughness in both kinds of samples is not very different, this difference becomes significant at larger scanning sizes. This means that the surface roughness scale that could have a main role in cell adhesion varies depending on the size, shape and flexibility of participating cells. This consideration suggests that in cell–material interaction studies, surface roughness should not be considered as an absolute and independent property of the material, but should be measured at scales in the order of the cell sizes, at least if a microscopic interpretation of the influence of roughness on the adhesion is intended. The microscopic information is contrasted with that coming from a macroscopic approach obtained by contact angle measurements for polar and non-polar liquids whose surface tension is comprised in a broad range. Despite the very large differences of contact angles among liquids for each surface condition, a similar increase for the blasted surface with respect to the polished has been found. Interpretation of these results are in accordance with the microscopic analysis done through the use of a functional roughness parameter, namely the valley fluid retention index, evaluated from the AFM images, which has been shown not to correlate with the RMS roughness, one of the most commonly used roughness parameter.  相似文献   

11.
Surface topography of polished and blasted samples of a Ti6Al4V biomaterial has been studied using an atomic force microscope. Surface RMS roughness and surface area have been measured at different scales, from 1 to 50 μm, while at distances below 10 μm the surface RMS roughness in both kinds of samples is not very different, this difference becomes significant at larger scanning sizes. This means that the surface roughness scale that could have a main role in cell adhesion varies depending on the size, shape and flexibility of participating cells. This consideration suggests that in cell–material interaction studies, surface roughness should not be considered as an absolute and independent property of the material, but should be measured at scales in the order of the cell sizes, at least if a microscopic interpretation of the influence of roughness on the adhesion is intended. The microscopic information is contrasted with that coming from a macroscopic approach obtained by contact angle measurements for polar and non-polar liquids whose surface tension is comprised in a broad range. Despite the very large differences of contact angles among liquids for each surface condition, a similar increase for the blasted surface with respect to the polished has been found. Interpretation of these results are in accordance with the microscopic analysis done through the use of a functional roughness parameter, namely the valley fluid retention index, evaluated from the AFM images, which has been shown not to correlate with the RMS roughness, one of the most commonly used roughness parameter.  相似文献   

12.
The three-dimensional structures of polymer membranes are different at surfaces and inside bulks, and thus, in general, physical/chemical properties are also different. Morphologies and properties of membrane surfaces are now visualized by current-sensing atomic force microscopy. The increase in performances of a single cell is discussed based on the three-dimensional structures of the polymer membrane, anion-exchange membrane as an example, used for fuel cells. Other reports on Nafion®, proton-exchange membrane, are also introduced to show the importance of this microscopic method.  相似文献   

13.
采用简便的旋涂过程和一步水热法在压电基片上制备了Ga掺杂的ZnO纳米薄膜(GZO)。在水热处理过程中,通过添加不同的聚合物可形成纳米盘和纳米花状形貌的薄膜。采用场发射扫描电镜(Fe-SEM)、X射线衍射(XRD)和Raman光谱表征了样品的形貌、微结构和组成。 XRD和FE-SEM结果证明,在AlN/Si压电基片上形成的纳米盘、纳米棒和纳米花状GZO均为纤维锌矿相。采用浸渍法进一步在所制GZO样品上固定了绿色的荧光蛋白质(GFP)。运用原子力显微镜和荧光光谱分析了GFP与GZO表面结合的性质,考察了其用于传感器和生物成像技术的可行性。痕量GFP的固定使该材料产生荧光响应,表明其用于紫外光传感器时具有较好活性。  相似文献   

14.
Ar atmospheric pressure plasma (APP) was used to treat indium-tin-oxide (ITO). The plasma conditions were varied to treat the ITO surface, e.g., plasma treatment time, RF power, flow rate, and the plasma outlet-to-sample distance. The plasma effectiveness was measured by the contact angle. The change in the surface energy calculated with the Owens-Wendt method mainly arises from the polar component. The dynamic contact angle measurements show that APP-treated surface showed considerably lower hysteresis in the water and ethylene glycol but there was no change in hysteresis in methylene iodide compared with the untreated ITO. Atomic force microscopy showed that the Ar APP-treated surface sharply decreased the surface roughness and showed a similar morphology as the untreated ITO. X-ray photoelectron spectroscopy showed that the Ar APP treatment not only effectively removed carbon contamination from the surface but also introduced oxygen. Therefore, it is believed that the APP treatment modifies the physico-chemical properties of ITO, which can in turn improve the performance of the organic light-emitting diodes.  相似文献   

15.
Mu Y  Song D  Li Y  Zhang HQ  Li W  Luo GM  Jin QH 《Talanta》2005,66(1):181-187
Glutathione peroxidase (GPX) is an important antioxidant enzyme, which plays an important role in scavenging reactive oxygen species. To obtain humanized GPX catalytic antibodies, the phage displayed human antibody library on the surface of the filamentous bacteriophage was used to select novel antibodies by repetitive screening. Phage antibodies B8, H6 and C1 with the GSH-binding site were obtained from the library by enzyme-linked immunosorbent assay (ELISA) analysis with four rounds of selection against three haptens, S-2,4-dinitrophenyl t-butyl ester [GSH-S-DNP-Bu (B)], S-2,4-dinitrophenyl t-hexyl ester [GSH-S-DNP-He (H)] and S-2,4-dinitrophenyl cycle-hexyl ester [GSH-S-DNP-cHe (C)], and characterized using surface plasmon resonance (SPR) biosensor. The gold layer was modified by dithiodiglycolic acid (DDA) and three haptens were easily attached to DDA by self-assembling to form a biosensor membrane. The membrane bounds specifically corresponding antibodies. The kinetic process of the reaction between phage antibodies and their haptens was studied by SPR biosensor. In order to improve selectivity, chemical modification was used to incorporate directly catalytic group selenocysteine (Sec) into selected phage clone B8, H6 and C1 to form Se-B8, Se-H6 and Se-C1, respectively. The GPX activities of Se-B8, Se-H6 and Se-C1 were found to be 3000, 2000 and 700 units/μmol, respectively. Compared with conventional ELISA analysis, the proposed method based on SPR biosensor is much more rapid and simpler.  相似文献   

16.
A non‐optical force sensor that allows operation both in lateral (shear) and in vertical (tapping) force detection modes has been introduced for dynamic tip–sample distance regulation in scanning near‐field optical microscopy (SNOM) of biological samples. The sensor is based on a rectangular bimorph cantilever consisting of two thin piezoceramic layers bonded to a brass centre shim. One of the piezo layers serves as the probe dither and another as the responder of the sensed forces. The sensor is driven with a home‐made Q‐control electronics so that its sensitivity and bandwidth can be adjusted. The dynamics, characteristics and design considerations of the sensor are theoretically and experimentally discussed. Driving the bimorph cantilever at its eigenfrequency with appropriate force feedback allows one to obtain a quality factor (Q‐factor) up to 103 in water, suitable for different sample softness and imaging environments. The high sensitivity of the sensor is demonstrated both by shear force and by tapping mode imaging of soft biological samples in their natural state. Near‐field optical resolution of better than 100 nm on red blood cells in water has been obtained. The experimental results suggest that this SNOM sensor would be a promising set‐up for biological applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Accurate analysis of samples is very important for scientists working in many fields. XRF device is used very frequently especially in mine analysis. However, researchers are trying to reach accurate results with many different analysis methods. In addition to the known analysis methods, alternative research methods also guide the studies. In this study, two barite ore samples, collected from two regions of different nature (Denizli and Akda?madeni) by following specified sampling methods, were analyzed using Confocal Raman Spectroscopy (CRS) and Polarized Energy Dispersive X-Ray Fluorescence (PEDXRF) spectrometer. The first sample was from a metamorphic basement, and the second was from an alkali syenite rock unit. The main objective of this paper is to compare the optical characteristics of these two different barite samples collected from different regions under a polarized microscope, using CRS and PEDXRF. The results of polarized microscopy analysis showed that the barite taken from Denizli is associated with calcite. On the other hand, the barite taken from Akda?madeni is associated with galena, celestite, and quartz. Two different colors were observed in the barite samples. CRS and PEDXRF results showed that the barites collected from two regions differed in mineral association, chemical composition, and physical properties. The accuracy of the chemical analysis technique was ensured by following USGS standards, GBW 7109, and GBW-7309 Sediment. Barite ores were analyzed using HR-800 (HORIBA-Jobin Yvon) CRS and a polarized microscope (Leica DMLP). Thanks to this study, it has been shown that mineral analyzes can be performed with an accuracy close to XRF with Confocal Raman spectroscopy. Confocal Raman spectroscopy will also guide researchers for mineral analysis.  相似文献   

18.
Results show investigations of surface of modified glass fibres (before and after chemical modification of their surface), which are candidates for future original matrix-less reference material for volatile ethene analytes (C2H4). Used analytical methods are secondary ion mass spectrometry and atomic force microscopy. The investigations were aimed at observation of changes and processes which occurred on the surface of glass fibres covered with an aluminum layer and constituting an ethane carrier.The paper describes the procedure of chemical modification of the surface of 3 cm segments of glass fibres covered with an aluminum layer (660/680 μm, external diameter of quartz/external Al diameter), a surfactant constituting a source of ethene. Ethene (a measured constituent) in a standard gas mixture is obtained during the process of controlled thermal decomposition of a surface compound in a stream of rarefied gas (such kind of mixture is called matrix-less reference material).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号