首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 731 毫秒
1.
The gauge theory of dislocations and disclinations in crystals with polyatomic lattice is generalized to ferroelastic interactions. In this work, based on the SO(3NT(3N) gauge group, an unbouned isotropic continuous medium comprising dislocations and disclinations is used to model an actual crystal, where N is the number of atoms per unit cell and λ is the sign of a semidirect product.  相似文献   

2.
We present results from a simulation of SU(2) lattice gauge theory with N f = 4 flavors of Wilson fermion and non-zero quark chemical potential μ, using the same 123×24 lattice, bare gauge coupling, and pion mass in cut-off units as a previous study (S. Hands, S. Kim, J.I. Skullerud, Phys. Rev. D 81, 091502(R) (2010)) with N f = 2 . The string tension for N f = 4 is found to be considerably smaller implying smoother gauge field configurations. Thermodynamic observables and order parameters for superfluidity and color deconfinement are studied, and comparisons drawn between the two theories. Results for quark density and pressure as functions of μ are qualitatively similar for N f = 2 and N f = 4 ; in both cases there is evidence for a phase in which baryonic matter is simultaneously degenerate and confined. Results for the stress-energy tensor, however, suggest that while N f = 2 has a regime where dilute matter is non-relativistic and weakly interacting, N f = 4 matter is relativistic and strongly interacting for all values of μ above onset.  相似文献   

3.
We present the bundle (Aff(3)Λ)(ℝ3), with a geometric Dirac equation on it, as a three-dimensional geometric interpretation of the SM fermions. Each (ℂΛ)(ℝ3) describes an electroweak doublet. The Dirac equation has a doubler-free staggered spatial discretization on the lattice space (Aff(3)ℂ)(ℤ3). This space allows a simple physical interpretation as a phase space of a lattice of cells. We find the SM SU(3) c ×SU(2) L ×U(1) Y action on (Aff(3)Λ)(ℝ3) to be a maximal anomaly-free gauge action preserving E(3) symmetry and symplectic structure, which can be constructed using two simple types of gauge-like lattice fields: Wilson gauge fields and correction terms for lattice deformations. The lattice fermion fields we propose to quantize as low energy states of a canonical quantum theory with ℤ2-degenerated vacuum state. We construct anticommuting fermion operators for the resulting ℤ2-valued (spin) field theory. A metric theory of gravity compatible with this model is presented too.  相似文献   

4.
The mass spectrum of pure Yang–Mills theory in 3+1 dimensions is discussed for an arbitrary simple gauge algebra within a quasigluon picture. The general structure of the low-lying gluelump and two-quasigluon glueball spectrum is shown to be common to all algebras, while the lightest C=− three-quasigluon glueballs only exist when the gauge algebra is A r≥2, that is, in particular, \mathfraksu(N 3 3)\mathfrak{su}(N\geq3). Higher-lying C=− glueballs are shown to exist only for the A r≥2, Dodd−r≥4 and E6 gauge algebras. The shape of the static energy between adjoint sources is also discussed assuming the Casimir scaling hypothesis and a funnel form; it appears to be gauge-algebra dependent when at least three sources are considered. As a main result, the present framework’s predictions are shown to be consistent with available lattice data in the particular case of an \mathfraksu(N)\mathfrak{su}(N) gauge algebra within ’t Hooft’s large-N limit.  相似文献   

5.
We consider deconfined matter in SU(N) gauge theory as an ideal gas of transversely polarized quasi-particle modes having a temperature-dependent mass m(T). Just above the transition temperature, the mass is assumed to be determined by the critical behavior of the energy density and the screening length in the medium. At high temperature, it becomes proportional to T as the only remaining scale. The resulting (trace anomaly based) interaction measure Δ=(ϵ−3P)/T 4 and energy density are found to agree well with finite temperature SU(3) lattice calculations.  相似文献   

6.
We study refined and motivic wall-crossing formulas in N=2{{\mathcal N}=2} supersymmetric gauge theories with SU(2) gauge group and N f < 4 matter hypermultiplets in the fundamental representation. Such gauge theories provide an excellent testing ground for the conjecture that “refined = motivic.”  相似文献   

7.
We consider various sufficiently nonlinear vector models of ferromagnets, of nematic liquid crystals and of nonlinear lattice gauge theories with continuous symmetries. We show, employing the method of Reflection Positivity and Chessboard Estimates, that they all exhibit first-order transitions in the temperature, when the nonlinearity parameter is large enough. The results hold in dimension 2 or more for the ferromagnetic models and the RPN–1 liquid crystal models and in dimension 3 or more for the lattice gauge models. In the two-dimensional case our results clarify and solve a recent controversy about the possibility of such transitions. For lattice gauge models our methods provide the first proof of a first-order transition in a model with a continuous gauge symmetry.Acknowledgement We thank in particular E. Domany and A. Schwimmer who suggested to us to consider lattice gauge models, and also L. Chayes, D. v.d. Marel, A. Messager, K. Netocný, S. Romano and A. Sokal for stimulating discussions and/or correspondence. S.S. acknowledges the financial support of the RFFI grant 03-01-00444.  相似文献   

8.
We study concentration properties of the lattice free field , i.e. the centered Gaussian field with covariance given by the Green function of the (discrete) Laplacian, when constrained to be positive in a region of volume O(N d ) (hard–wall condition). It has been shown in [3] that, as N→∞, the conditioned field is pushed to infinity: more precisely the typical value of the ϕ-variable to leading order is , and the exact value of c was found. It was moreover conjectured that the conditioned field, once this diverging height is subtracted, converges weakly to the lattice free field. Here we prove this conjecture, along with other explicit bounds, always in the direction of clarifying the intuitive idea that the free field with hard–wall conditioning merely translates away from the hard wall. We give also a proof, alternative to the one presented in [3], of the lower bound on the probability that the free field is everywhere positive in a region of volume N d . Received: 26 October 1998 / Accepted: 5 April 1999  相似文献   

9.
I examine the potential of a pointlike particle carrying SU (N c) charge in a gauge theory with a dilaton. The potential depends on boundary conditions imposed on the dilaton: For a dilaton that vanishes at infinity the resulting potential is a regulatized Coulomb potential of the form (r+r ϕ)−1, withr ϕ, inversely proportional to the decay constant of the dilaton. Another natural constraint on the dialaton ϕ is independence of (1/g 2) exp(ϕ/fϕ) from the gauge couplingg. This requirement yields a confining potential proportional tor.  相似文献   

10.
11.
The main aim of this paper is to discuss the entropic repulsion of random interfaces between two hard walls. We consider the d (≥ 3)-dimensional Gaussian lattice field on ℝλ N , λ N = [−N, N] d ∩ ℤ d and identify the repulsion of the field as N → ∞ under the condition that the field lies between two hard walls at the height level 0 and L in Λ N where L is large enough but finite. We also study the same problem for two layered interfaces case.  相似文献   

12.
We study the adiabatic limit of a sequence of Ω-anti-self-dual connections on unitary bundles over a product of two compact Calabi–Yau surfaces M×N by scaling metrics to shrink N to a point. We show that after fixing gauge transformations, a subsequence of the N-components of these connections converges to a triholomorphic curve from M away from a Cayley cycle in M×N to the moduli space of instantons on M×N modulo gauge equivalence in the Hausdorff topology, and converges on the blow-up locus to a family, which is parameterized by the Cayley cycle, of triholomorphic curves from C 2 to . Received: 22 May 1998 / Accepted: 26 August 1998  相似文献   

13.
Two topics of lattice gauge theory are reviewed. They include string tension and β-function calculations by strong coupling Hamiltonian methods for SU(3) gauge fields in 3 + 1 dimensions, and a 1/N-expansion for discrete gauge and spin systems in all dimensions. The SU(3) calculations give solid evidence for the coexistence of quark confinement and asymptotic freedom in the renormalized continuum limit of the lattice theory. The crossover between weak and strong coupling behavior in the theory is seen to be a weak coupling but non-perturbative effect. Quantitative relationships between perturbative and non-perturbative renormalization schemes are obtained for the O(N) nonlinear sigma models in 1 + 1 dimensions as well as the range theory in 3 + 1 dimensions. Analysis of the strong coupling expansion of the β-function for gauge fields suggests that it has cuts in the complex 1/g2-plane. A toy model of such a cut structure which naturally explains the abruptness of the theory's crossover from weak to strong coupling is presented. The relation of these cuts to other approaches to gauge field dynamics is discussed briefly.The dynamics underlying first order phase transitions in a wide class of lattice gauge theories is exposed by considering a class of models-P(N) gauge theories - which are soluble in the N → ∞ limit and have non-trivial phase diagrams. The first order character of the phase transitions in Potts spin systems for N #62; 4 in 1 + 1 dimensions is explained in simple terms which generalizes to P(N) gauge systems in higher dimensions. The phase diagram of Ising lattice gauge theory coupled to matter fields is obtained in a 1N expansion. A one-plaquette model (1 time-0 space dimensions) with a first-order phase transitions in the N → ∞ limit is discussed.  相似文献   

14.
A relation between circular 1/2 BPS ’t Hooft operators in 4d N=4{{\mathcal N}=4} SYM and instantonic solutions in 2D Yang-Mills theory (YM2) has recently been conjectured. Localization indeed predicts that those ’t Hooft operators in a theory with gauge group G are captured by instanton contributions to the partition function of YM2, belonging to representations of the dual group L G. This conjecture has been tested in the case G = U(N) =  L G and for fundamental representations. In this paper, we examine this conjecture for the case of the groups G = SU(N) and L G = SU(N)/Z N and loops in different representations. Peculiarities when groups are not self-dual and representations not “minimal” are pointed out.  相似文献   

15.
In this work, we propose a new approach to the computation of heat conductivity in nonlinear systems. The total heat conductivity process is decomposed into two parts: one part is an equilibrium process at the same temperature T of either end of the lattice, which does not transfer energy and the other is a nonequilibrium process at temperature ΔT of one end and a zero temperature of the opposite end of the lattice. This approach makes it possible to somewhat reduce the time of computation of heat conductivity at ΔT → 0. The threshold temperature T thr is found to behave as T thrN −3, where N is the lattice length. The threshold temperature conventionally separates two mechanisms of heat conductivity: at T < T thr, phonon heat conductivity is dominant; at T > T thr, the contribution of soliton heat conductivity increases with increasing temperature. The problem of the computation of heat conductivity in the limit ΔT → 0 reduces to the heat conductivity of a harmonic lattice with time-dependent bond rigidities determined by an equilibrium process at temperature T. An exact expression for the temperature dependence of sound velocity in a lattice with a β-FPU potential at T < 10 is derived. A numerical experiment confirmed the existence of solitons and breathers that correspond to a modified Korteweg-de Vries (KdV) equation. The problem of the quantitative contribution of solitons and breathers to heat conductivity requires further study.  相似文献   

16.
We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices γ γ Z, γ Z Z, Z Z γ and Z ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2)×U(1)]2 gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(NU(1) gauge symmetry breaks down to SU(2) L ×U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a′ and compare with the SM and Little Higgs models.  相似文献   

17.
 The bundle structure of the space of Ashtekar's generalized connections is investigated in the compact case. It is proven that every stratum is a locally trivial fibre bundle. The only stratum being a principal fibre bundle is the generic stratum. Its structure group equals the space of all generalized gauge transforms modulo the constant center-valued gauge transforms. For abelian gauge theories the generic stratum is globally trivial and equals the total space . However, for a certain class of non-abelian gauge theories – e.g., all SU(N) theories – the generic stratum is nontrivial. This means, there are no global gauge fixings – the so-called Gribov problem. Nevertheless, for many physical measures there is a covering of the generic stratum by trivializations each having total measure 1. Finally, possible physical consequences and the relation between fundamental modular domains and Gribov horizons are discussed. Received: 4 March 2002 / Accepted: 20 August 2002 Published online: 30 January 2003 Communicated by H. Nicolai  相似文献   

18.
Mekata  M.  Kikuchi  H.  Watanabe  I.  Nagamine  K.  Itoh  S.  Mamiya  H.  Kojima  K. M. 《Hyperfine Interactions》2001,136(3-8):263-268
The magnetic ordering process of Ising spins on diluted square lattice was studied by muon spin relaxation using model compounds Rb2Co c Mg1−c F4. Muon relaxation shows an anomaly at a remarkably higher temperature T N μSR than the transition temperature determined by neutron Bragg scattering T N ND near the percolation threshold for square lattice (c p=0.593). The difference between the two temperatures amounts to 50% of T N ND just above c p. The field cooling effect of DC magnetic susceptibility is appreciable below T N ND while the temperature of the anomaly in AC susceptibility approaches to T N μSR as the frequency is increased. It was concluded that there is a crossover from two-dimensional ordering at T N μSR to three-dimensional ordering at T N ND but the two-dimensional order between T N μSR and T N ND has slow fluctuations due to the fractal structure with a plenty of weak links. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

19.
One-flavour QCD – a gauge theory with SU(3) colour gauge group and a fermion in the fundamental representation – is studied by Monte Carlo simulations. The mass spectrum of the hadronic bound states is investigated in a volume with extensions of L≃4.4r0 (≃ 2.2 fm) at two different lattice spacings: a≃0.37r0 (≃ 0.19 fm) and a≃0.27r0 (≃ 0.13 fm). The lattice action is a Symanzik tree-level improved Wilson action for the gauge field and an (unimproved) Wilson action for the fermion.  相似文献   

20.
 We consider a variety of nearest-neighbor spin models defined on the d-dimensional hypercubic lattice ℤ d . Our essential assumption is that these models satisfy the condition of reflection positivity. We prove that whenever the associated mean-field theory predicts a discontinuous transition, the actual model also undergoes a discontinuous transition (which occurs near the mean-field transition temperature), provided the dimension is sufficiently large or the first-order transition in the mean- field model is sufficiently strong. As an application of our general theory, we show that for d sufficiently large, the 3-state Potts ferromagnet on ℤ d undergoes a first-order phase transition as the temperature varies. Similar results are established for all q-state Potts models with q≥3, the r-component cubic models with r≥4 and the O(N)-nematic liquid-crystal models with N≥3. Received: 22 July 2002 / Accepted: 12 January 2003 Published online: 5 May 2003 RID="⋆" ID="⋆" ? Copyright rests with the authors. Reproduction of the entire article for non-commercial purposes is permitted without charge. Communicated by J. Z.Imbrie  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号