In this paper, we study the effect of spherical aberrations on the light intensity and the temperature distribution in the focal region in a 250-kHz femtosecond laser irradiated Ag+-doped borosilicate glass. When a focused beam goes through an interface between air and glass, spherical aberration will result in the separation of the focal point and then cause a clear change of the light intensity distribution along the incident direction. That phenomenon will further influence the longitudinal cross-section temperature distribution in glass. Here we use Ag nanoparticle formation as a marker for establishing temperature distribution and we find that the formation of nanoparticle shows a strong dependence on the temperature field and the detailed precipitation process is also discussed. 相似文献
In the development of microfluidic chips, conventional 2D processing technologies contribute to the manufacturing of basic microchannel networks. Nevertheless, in the pursuit of versatile microfluidic chips, flexible integration of multifunctional components within a tiny chip is still challenging because a chip containing micro‐channels is a non‐flat substrate. Recently, on‐chip laser processing (OCLP) technology has emerged as an appealing alternative to achieve chip functionalization through in situ fabrication of 3D microstructures. Here, the recent development of OCLP‐enabled multifunctional microfluidic chips, including several accessible photochemical/photophysical schemes, and photosensitive materials permiting OCLP, is reviewed. To demonstrate the capability of OCLP technology, a series of typical micro‐components fabricated using OCLP are introduced. The prospects and current challenges of this field are discussed.
Internal modification of transparent materials such as glass can be carried out using multiphoton absorption induced by a femtosecond (fs) laser. The fs‐laser modification followed by thermal treatment and successive chemical wet etching in a hydrofluoric (HF) acid solution forms three‐dimensional (3D) hollow microstructures embedded in photosensitive glass. This technique is a powerful method for directly fabricating 3D microfluidic structures inside a photosensitive glass microchip. We used fabricated microchips, referred to as a nanoaquarium, for dynamic observations of living microorganisms. In addition, the present technique can also be used to form microoptical components such as micromirrors and microlenses inside the photosensitive glass, since the fabricated structures have optically flat surfaces. The integration of microfluidics and microoptical components in a single glass chip yields biophotonic microchips, in other words, optofluidics, which provide high sensitivity in absorption and fluorescence measurements of small volumes of liquid samples. 相似文献
This paper describes the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser. Such structural transformations were verified by Raman spectroscopy. The borate glass is transformed into low temperature (LT) phase of barium metaborate (BaB_2O_4) crystals after being irradiated for 10 min by a femtosecond laser. In addition, after 20 min of irradiation, high temperature (HT) phase of BaB_2O_4 crystals is also produced. Further studies demonstrate that LT phase BaB_2O_4 crystals are formed in the HT phase BaB_2O_4 crystals after femtosecond laser irradiation for 10 s. 相似文献
We study the Fresnel diffraction of a phase grating under the illumination of a chirped femtosecond laser pulse. Using spatial spectrum theory, first we extract the central wavelength signal from the diffraction wave of the chirped pulse through a diaphragm. Then the central wavelength waves are directed to interfere in remote regions by two reflectors. The interference stripes at different distance will be exactly the same in interference region. Since the intensity distribution of the stripes is related to the chirp parameter of the femtosecond pulse, through measuring the stripe intensity distribution, we can indirectly detect the chirp parameter of the femtosecond pulse. 相似文献
The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by setting its velocity and the repetition rate of the laser. The ripple-to-ripple linking can also be realized through line-by-line scanning on a vertical level. The mechanism analysis shows that the seeding effect plays a key role in the linking of ripples. 相似文献