首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
The organophosphonate-substituted alkoxides [Bu4nN]2[{Ti(OMe)3(O3PPh)}2] (1) and [Bu4nN]2[{Nb(OMe)3(O3PPh)}2(μ-O)] (2) have been prepared from [Bu4nN][PhPO3H] and the metal alkoxides Ti(OMe)4 or Nb(OMe)5 respectively. In 1, the bridging phenylphosphonates occupy trans coordination sites, whereas in 2, a cis–bridging geometry is adopted.  相似文献   

2.
The use of salicylaldehyde oxime (H2salox) in manganese(III) carboxylate chemistry has yielded new members of the family of hexanuclear compounds presenting the [Mn63-O)22-OR)2]12+ core, complexes [MnIII63-O)2(O2CPh)2(salox)6(L1)2(L2)2] (L1 = py, L2 = H2O (1); L1 = Me2CO, L2 = H2O (2); L1 = L2 = MeOH (3)). Addition of NaOMe to the acetonitrile reaction mixture, afforded the 1D complex [MnIII3Na(μ3-O)(O2CPh)2(salox)3(MeCN)]n (4), whereas addition of NaClO4 to the acetone reaction mixture afforded an analogous 1D complex [MnIII3Na(μ3-O)(O2CPh)2(salox)3(Me2CO)]n (5). The structures of 1–3 present the [Mn63-O)22-OR)2]12+ core and can be described as two [Mn33-O)]7+ triangular subunits linked by two μ2-oximato oxygen atoms of the salox2− ligands, which show the less common μ32OO′:κN coordination mode. The benzoato ligands are coordinated through the usual syn,syn2OO′ mode. The 1D polymeric structures of 4 and 5 consist of alternating [Mn33-O)]7+ subunits and Na+ atoms linked through two μ32OO′:κN and one μ42O2O′:κN salox2− ligands as well as one syn,anti2OO′ benzoato ligand. DC and AC magnetic susceptibility studies on 1 revealed the stabilization of an S = 4 ground state, and indications of single-molecule magnetism behavior, whereas the DC experimental data from polycrystalline sample of 5 are indicative of antiferromagnetic interactions within the [Mn3] subunit. Solid state 1H NMR data of 1 were used to probe the spin-lattice relaxation of the system.  相似文献   

3.
The novel hexanuclear platinum–copper complex [Pt2Cu4(C6F5)4(CCtBu)4(acetone)2] (1) and the polynuclear derivative [PtCu2(C6F5)2(CCPh)2]x (2), which crystallises in acetone as [Pt2Cu4(C6F5)4(CCPh)4(acetone)4] (2)·(acetone)4, have been prepared using [cis-Pt(C6F5)2(THF)2] and the corresponding copper–acetylide [Cu(CCR)]x (molar ratio 1:2) as starting materials. Treatment of 1 and 2 with 2,2′-bipyridine (molar ratio Cu–bipy 1:1), afforded the new trinuclear derivatives [{cis-Pt(C6F5)2(μ-CCR)2}{Cu(bipy)}2] (R=tBu 3, Ph 4), in which the dianionic 3-platina-1,4-diyne acts as a didentate bridging ligand to two different cationic Cu(bipy) units through η2-side-on coordination of the alkynyl fragments. While similar treatment of 1 with dppe (Cu–dppe 1:1) yielded [{cis-Pt(C6F5)2(μ-CCtBu)2}{Cu(dppe)}2] (5), the analogous reaction of 2 with dppe afforded a mixture of complexes containing [Pt(C6F5)(CCPh)(dppe)] as the main platinum compound. The crystal structures of 1, (acetone)4, 3 and 4 and the luminescent behaviour of all complexes have been determined. A comparison of the photoluminescent spectra of 1 and 2 with those of the related platinum–silver species [PtAg2(C6F5)2(CCR)2]x and the monomeric [cis-Pt(C6F5)2(CCR)2]2− suggests the presence of emitting states bearing a large cluster [PtM2]x-to-ligand (alkynide) charge transfer (CLCT).  相似文献   

4.
Chlorodiphenylphosphine and 2,2′-biphenylylenephosphorochloridite react with 2-hydroxy-2′-(1,4-bisoxo-6-hexanol)-1,1′-biphenyl to yield the new α,ω-bis(phosphorus-donor)-polyether ligands, 2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2 (1) and 2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8) (2). These ligands react with Mo(CO)4(nbd) to form the monomeric metallacrown ethers, cis-Mo(CO)4{2-Ph2PO(CH2CH2O)2–C12H8-2′-OPPh2} (cis-3) and cis-Mo(CO)4{2-(2,2′-O2C12H8)P(CH2CH2O)2–C12H8-2′-P(2,2′-O2C12H8)} (cis-4), in good yields. The X-ray crystal structures of cis-3 and cis-4 are significantly different, especially in the conformation of the metal center and the adjacent ethylene group. The very different 13C-NMR coordination chemical shifts of this ethylene group in cis-3 and cis-4 suggest that the solution conformations of these metallacrown ethers are also quite different. Both metallacrown ethers undergo cistrans isomerization in the presence of HgCl2. Although the cistrans equilibrium constants for the isomerization reactions are nearly identical, the isomerization of cis-3 is more rapid. Phenyl lithium reacts with cis-3 to form the corresponding benzoyl complexes but does not react with either trans-3 or cis-4. Both the slower rate of cistrans isomerization of cis-4 and its lack of reaction with PhLi are consistent with weaker interactions between the hard metal cations and the carbonyl oxygens in both trans-3 and cis-4.  相似文献   

5.
Six new chiral triorganotin(IV) complexes, {(R3Sn)2[C3H6(COO)2]}n (R = Me: 1; Bu: 2), {(R3Sn)2[C4H8(COO)2]}n (R = Me: 3; Bu: 4), and {(R3Sn)2[C2H4O(COO)2]}n (R = Me: 5; Bu: 6) have been prepared by treatment of (R)-(+)-methylsuccinic acid, (S)-(+)-methylglutaric acid and l-(−)-malic acid, with the corresponding R3SnCl (R = Me, Bu) and sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy and TGA. Except for 3, all of the complexes were also characterized by X-ray crystallography. The structural analyses reveal that complexes 1 and 5 have 2D network structures in which (R)-(+)-methylsuccinic acid and l-(−)-malic acid act as tetradentate ligands coordinated to trimethyltin(IV) ions. Complexes 2 and 4 have 3D metal-organic framework structures in which the deprotoned acids serve as tetradentate ligands. Complex 6 adopts a 1D zigzag chain structure and forms a 2D supramolecular framework through intermolecular C-H?O interactions. In addition, the antitumor activities of complexes 1-6 have been studied. We also have measured the specific rotation of the chiral dicarboxylic acids and the organotin derivatives.  相似文献   

6.
The reactions of the title compound, Me2Sn(S-SO3Na · H2O)2, with alkyliodides and trimethyltin chloride in an aqueous medium, as well as with dibenzo-18-crown-6 (DB-18-C-6) in acetone have been studied. The iodides RI (R = Me, Et) attack both of the tin—sulfur bonds to give dimethyltin diiodide and the respective disulfides, R2S2. Trimethyltin chloride enters an exchange reaction which involves sodium ions and affords Me2Sn(S-SO3SnMe3)2 as the reaction intermediate; the latter decomposes to ultimately give trimethyltin sulfate, dimethyltin thiosulfite, and elemental sulfur. An ionic complex, [Me2Sn(S-SO3)2]2 2–[Na(DB-18-C-6)(Me2CO)]+[Na(DB-18-C-6)(Me2CO)(H2O)]+, soluble in acetone and methylene chloride has been also synthesized, and its structure has been determined by means of X-ray techniques.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 962–966, May, 1993.  相似文献   

7.
Four different dimethyltin(IV) complexes of Schiff bases derived from 2-amino-3-hydroxypyridine and different substituted salicylaldehydes have been synthesized. The compounds, with the general formula [Me2Sn(2-OArCHNC5H3NO)], where Ar = –C6H3(5-CH3) [Me2SnL1], –C6H3(5-NO2) [Me2SnL2], –C6H2(3,5-Cl2) [Me2SnL3], and –C6H2(3,5-I2) [Me2SnL4], were characterized by IR, NMR (1H and 13C), mass spectroscopy and elemental analysis. Me2SnL3 was also characterized by X-ray diffraction analysis and shows a fivefold C2NO2 coordination with distorted square pyramidal geometry. H3C–Sn–CH3 angles in the complexes were calculated using Lockhart's equations with the 1J(117/119Sn–13C) and 2J(117/119Sn–1H) values (from the 1H-NMR and 13C-NMR spectra). The in vitro antibacterial and antifungal activities of dimethyltin(IV) complexes were also investigated.  相似文献   

8.
Chloride abstraction from [{M(η3 --- C3H5)Cl}n] (M = Pt, n = 4 or M = Pd, n = 2) by (NBu4)2[cis-Pt(C6F5)2(CCSiMe3)2] (1) gives rise to novel homo- and hetero-dinuclear zwitterionic derivatives (NBu4) [{cis-Pt(C6F5)2(CCSiMe3)2}M(η3-C3H5)] (M = Pt 2; M = Pd 3) which are formed by a M(η3-allyl)+ unit attached to both alkynyl ligands of the {cis-Pt(C6F5)2(CCSiMe3)2}2− fragment. The structure of 3 has been established by X-ray diffraction.  相似文献   

9.
A series of uranium(IV) mixed-ligand amide–halide/pseudohalide complexes (C5Me5)2U[N(SiMe3)2](X) (X = F (1), Cl (2), Br (3), I (4), N3 (5), NCO (6)), (C5Me5)2U(NPh2)(X) (X = Cl (7), N3 (8)), and (C5Me5)2U[N(Ph)(SiMe3)](X) (X = Cl (9), N3 (10)) have been prepared by one electron oxidation of the corresponding uranium(III) amide precursors using either copper halides, silver isocyanate, or triphenylphosphine gold(I)azide. Agostic U?H–C interactions and η3-(N,C,C′) coordination are observed for these complexes in both the solid-state and solution. There is a linear correlation between the chemical shift values of the C5Me5 ligand protons in the 1H NMR spectra and the UIV/UIII reduction potentials of the (C5Me5)2U[N(SiMe3)2](X) complexes, suggesting that there is a common origin, that is overall σ-/π-donation from the ancillary (X) ligand to the metal, contributing to both observables. Optical spectroscopy of the series of complexes 16 is dominated by the (C5Me5)2U[N(SiMe3)2] core, with small variations derived from the identity of the halide/pseudohalide. The considerable π-donating ability of the fluoride ligand is reflected in both the electrochemistry and UV-visible-NIR spectroscopic behavior of the fluoride complex (C5Me5)2U[N(SiMe3)2](F) (1). The syntheses of the new trivalent uranium amide complex, (C5Me5)2U[N(Ph)(SiMe3)](THF), and the two new weakly-coordinating electrolytes, [Pr4N][B{3,5-(CF3)2C6H3}4] and [Pr4N][B(C6F5)4], are also reported.  相似文献   

10.
Two novel dinuclear Ti(IV) complexes of the ligand, 4,4′-methylene-bis (3-hydroxy-2-naphthalene carboxylic acid) (H4L) or pamoic acid having compositions, [(HL)2Ti2(μ-O)(DMF)2]·(DMF)6 (1) and [(L)2Ti2(μ-O)(DMF)2]·(DMF)4(4,4′-Bipy-2H)(H2O), (2) have been synthesized and characterized by analytical and spectral methods and the structure has been established by single crystal XRD. Unlike the reported polymeric structures observed in case of H4L or pamoic acid, the anti-conformation of H4L changes to syn - orientation to avoid poly-metallic complex formation, as noticed in 1 and 2. The dimeric Ti(IV) units stack in the lattice to form helical columns and the space between the adjacent columns is being filled by the solvent molecules in 1 and solvent plus the protonated 4,4′-bipy in the lattice of 2 and thus the neighbor columns are connected through weak interactions.  相似文献   

11.
Ligands containing unsaturated C2 and C4 units have been reacted with triruthenium dodecacarbonyl to produce new organometallic clusters with simple closo-RuxCy polyhedral frameworks which may be regarded as quasi-carboranes. The thermolysis of [Ru3(CO)12] with 1,4-diphenybutadiene yields the new clusters [Ru3(CO)8(μ3-CPh(CH)2CPh)] 2 and [Ru4(CO)9(μ4-CPhCCH2CH2Ph)] 3, while treatmentof a solution of [Ru3(CO)12] and diphenylacetylene with trimethylamine N–oxide (Me3NO) yields [Ru2(CO)6(μ-{C2Ph2}2CO)] 4 as the major product and the new cluster [Ru4(CO)11(μ4-C2Ph2)2] 5. The solid-state structures of 2, 3 and 5 have been established by single crystal X-ray diffraction analyses and are shown to possess closo-Ru3C4 pentagonal bipyramidal, closo-Ru4C2 octahedral and closo-Ru4C4 dodecahedral skeletons, respectively. The structure and bonding in all three clusters may be rationalised using the Wade–Mingos polyhedral skeletal electron pair approach.  相似文献   

12.
The mononuclear complexes [(η6-arene)Ru(ata)Cl]PF6 {ata = 2-acetylthiazole azine; arene = C6H6 [(1)PF6]; p-iPrC6H4Me [(2)PF6]; C6Me6 [(3)PF6]}, [(η5-C5Me5)M(ata)]PF6 {M = Rh [(4)PF6]; Ir [(5)PF6]} and [(η5-Cp)Ru(PPh3)2Cl] {η5-Cp = η5-C5H5 [(6)PF6]; η5-C5Me5 (Cp*) [(7)PF6]; η5-C9H7 (indenyl); [(8)PF6]} have been synthesised from the reaction of 2-acetylthiazole azine (ata) and the corresponding dimers [(η6-arene)Ru(μ-Cl)Cl]2, [(η5-C5Me5)M(μ-Cl)Cl]2, and [(η5-Cp)Ru(PPh3)2Cl], respectively. In addition to these complexes a hydrolysed product (9)PF6, was isolated from complex (4)PF6 in the process of crystallization. All these complexes are isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV–Vis spectroscopy. The molecular structures of [2]PF6 and [9]PF6 have been established by single-crystal X-ray structure analyses.  相似文献   

13.
Reaction of cis-[Mo(NCMe)2(CO)2(η5-L)][BF4] (L=C5H5 or C5Me5) with 1-acetoxybuta-1,3-diene gives the cationic complexes [Mo{η4-syn-s-cis-CH2CHCHCH(OAc)}(CO)2(η5-L)][BF4], which, on reaction with aqueous NaHCO3/CH2Cl2, afford good yields of the anti-aldehyde substituted complexes [Mo{η3-exo-anti-CH2CHCH(CHO)}(CO)2(η5-L)] 2 (L=C5Me5), 4 (L=C5H5)]. The corresponding η5-indenyl substituted complex 5 was prepared by protonation (HBF4·OEt2) of [Mo(η3-C3H5)(CO)2(η5-C9H7)] followed by addition of CH2=CHCH=CH(OAc) and hydrolysis (aq. NaHCO3/CH2Cl2). An X-ray crystallographic study of complex 2 confirmed the structure and showed that there is a contribution from a zwitterionic form involving donation of electron density from the molybdenum to the aldehyde carbonyl group. Treatment of 2 and 4, in methanol solution, with NaBH4 afforded the alcohols [Mo{η3-exo-anti-CH2CHCHCH2(OH)}(CO)2(η5-L)] [6 (L=C5H5), 8 (L=C5Me5)]; however, prolonged (30 h) reaction with NaBH4/MeOH surprisingly gave good yields of the methoxy-substituted complexes [Mo{η3-exo-anti-CH2CHCHCH2(OMe)}(CO)2(η5-L)] [7 (L=C5H5), 9 (L=C5Me5)], the structure of 7 being confirmed by single crystal X-ray crystallography. This methoxylation reaction can be explained by coordination of the hydroxyl group present in 6 and 8 onto B2H6 to form the potential leaving group HOBH3, which on ionisation affords [Mo(η4-exo-buta-1-3-diene)(CO)2(η5-L)]+ which is captured by reaction with OMe. Complex 8 is also formed in good yield on reaction of 2 with HBF4·OEt2 followed by treatment of the resulting cation [Mo{η4-exo-s-cis-syn-CH2CHCHCH(OH)}(CO)2(η5-C5Me5)][BF4] with Na[BH3CN]. Reaction of 4 with the Grignard reagents MeMgI, EtMgBr or PhMgCl afforded moderate yields of the alcohols [Mo{η3-exo-anti-CH2CHCHCH(OH)R}(CO)2(η5-C5H5)] [11 (R=Me), 12 (R=Et), 13 (R=Ph)]. Similarly, treatment of 2 with MeLi gave the corresponding alcohol 14. An attempt to carry out the Oppenauer oxidation [Al(OPr′)3/Me2CO] of 11 resulted in an elimination reaction and the formation of the η3-s-pentadienyl complex [Mo{η3-exo-anti-CH2CHCH(CHCH2)}(CO)2(η5-C5H5)], which was structurally identified by X-ray crystallography. Interestingly, oxidation of 6 with [Bu4nN][RuO4]/morpholine-N-oxide affords the aldehyde complex, 4 in good yield. Finally, reaction of 11 with [NO][BF4] followed by addition of Na2CO3 affords the fur-3-ene complex [Mo{η2-
(H)Me}(CO)(NO)(η5-C5H5)].  相似文献   

14.
Two new coordination complexes, viz. [Co(tmb)2(4,4′-bpy)2(H2O)2](Htmb)2 (1) and {[Ni(tmb)2(μ-4,4′-bpy)2(H2O)2](4,4′-bpy)}n (2), have been hydrothermally synthesized by reaction of the corresponding metal acetate with 2,4,6-trimethylbenzoic acid (Htmb) and 4,4′-bipyridyl (4,4′-bpy). X-ray single-crystal diffraction suggests that complex 1 represents a discrete mononuclear species in which the central metal ion is coordinated by the terminal carboxylate moiety and the 4,4′-bipyridyl ligand. The crystal structure of complex 2 reveals a 1D chain coordination polymer in which the Ni(II) ions are connected by the bridging 4,4′-bipyridyl ligands. In both cases, the coordination arrays are further extended via hydrogen bonding interactions to generate 3D supramolecular networks. Complexes 1 and 2 have also been characterized by spectroscopic (IR and UV/Vis), thermal (TGA) and magnetic susceptibility measurements. In addition, both complexes exhibit antimicrobial activity.  相似文献   

15.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6, L2 = C6H3(tBuOCH2)2-2,6) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl] (1) and [Ph2L2Sn]+[OTf] (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose.  相似文献   

16.
N,N′‐dioxide ligands such as 2, 2′‐bipyridine‐N,N‐dioxide (BPDO‐I) and 4, 4′‐bipyridine‐N,N‐dioxide (BPDO‐II) were used to trap the hydrated dimethyltin cations under controlled hydrolysis. The use of the chelating ligand BPDO‐I leads to the isolation of the discrete monocation [Me2Sn(BPDO‐I)(OH2)(NO3)]+[NO3] ( 2 ), whereas the linear ligand BPDO‐II directs the construction of cationic polymers, [{Me2Sn(OH2)2(μ‐BPDO‐II)}2+{NO3}2 · 2H2O]n ( 3· 2H2O) and [{Me2Sn(μ‐OH)(BPDO‐II)}22+{NO3}2 · H2O]n ( 4· H2O) under different reaction conditions.  相似文献   

17.
In aqueous solution [Fe2(μ-O)(phen)4(H2O)2]4+ (1, phen = 1,10-phenanthroline) equilibrates with its conjugate bases [Fe2(μ-O)(phen)4(H2O)(OH)]3+ (2) and [Fe2(μ-O)(phen)4(OH)2]2+ (3). In the presence of excess phen and in the pH range 2.5–5.5, the dimer quantitatively oxidizes pyruvic acid to acetic acid and carbon dioxide, the end iron species being ferroin, [Fe(phen)3]2+. The observed reaction rate shows a bell-shaped curve as pH increases, but is independent of added phen. Kinetic analysis shows that (3) is non-reactive and (1) has much higher reactivity than (2) in oxidizing pyruvic acid. The basicity of the bridging oxygen increases with deprotonation of the aqua ligands. The reaction rate decreases significantly in media enriched with D2O in comparison to that in H2O, with a greater retardation at higher pH, suggesting the occurrence of proton coupled electron transfer (PCET; 1e, 1H+), which possibly drags the energetically unfavorable reaction to completion in presence of excess phen.  相似文献   

18.
Treatment of RHN-CH2-(3,5-tBu2C6H2-2-OH) (R = C6H5 1a, p-MeC6H4 1b, Cy 1c; Cy = cyclohexyl) with 1 equiv of TiCp1Cl3 (Cp1 = η5-C5Me5) in the presence of 2.5 equiv of NEt3 in pentane or hexane at room temperature gives the monocyclopentadienyl phenoxo-amido monochloro complexes [TiCp1{RN-CH2-(3,5-tBu2C6H2-2-O)}Cl] (R = C6H5 2, p-MeC6H4 4, Cy 5). In a more polar solvent the phenoxo-amino complex [TiCp1{(C6H5)(H)N–CH2-(3,5-tBu2C6H2-2-O)}Cl2] (3) is obtained from the reaction with 1a. The reaction of TiCp1Cl3 with tBu(H)N–CH2-(3,5-tBu2C6H2-2-OH) (1d) affords the complex [TiCp1{tBu(H)N–CH2-(3,5-tBu2C6H2-2-O)}Cl2] (6) in which no coordination of the amino group to the metal centre is observed as a consequence of the high steric requirements of the amino substituent in the phenol-amine. All the reported compounds were characterised by the usual analytical and spectroscopic methods and the molecular structures of 2 and 5 were determined by X-ray diffraction analysis from suitable single crystals.Studies of catalytic activity for ethylene or propylene polymerisation using boron or aluminium reagents as cocatalysts were performed under different conditions. In general the trends observed for the phenoxo-amido precatalysts with the aluminium reagent as cocatalyst in the α-olefin polymerisation reactions might suggest a catalyst decomposition process through ligand abstraction by sMAO. The activity found for ethylene or propylene polymerisation when B(C6F5)3 or [CPh3][B(C6F5)4] are used as cocatalysts is related to the strength of the cation-anion interactions.  相似文献   

19.
In order to correlate 119Sn Mössbauer parameters and structural data for dimethyltin(IV) derivatives, the molecular structures of bis(acetato)dimethyltin(IV) and bis(trifluoroacetato)dimethyltin(IV) were determined by single crystal X-ray diffration. Crystals of Me2Sn(OOCCH3)2 are monoclinic, a = 26.282(4), b = 5.282(1), c = 14.434(3) Å, β = 101.17(2)°, Z = 8, space group C2/c, and those of [Me2Sn(OOCCF3)2]n are monoclinic, a = 8.444(1), b = 17.689(1), c = 15.368(1) Å, β = 93.013(9)°, Z = 8, space group Cc. The structures were solved by the Patterson method and were refined by full-matrix least-squares procedures to R = 0.025 and 0.027 (Rw = 0.023 and 0.030) for 2 298 and 4 182 reflections with I ≥ 3σ(F2), respectively.  相似文献   

20.
A series of new triorganotin(IV) pyridinedicarboxylates [(C2H5)3NH][(Me3Sn)3(2,6-pdc)2(H2O)2] (1), [(C2H5)3NH][(Ph3Sn)3(2,6-pdc)2(H2O)2] (2), [(C2H5)3NH]{[(PhCH2)3Sn]3(2,6-pdc)2(H2O)2} (3), [Me3Sn(3,5-pdc)]n (4), [Ph3Sn(3,5-pdc)]n (5), [(PhCH2)3Sn(3,5-pdc)]n (6), [(Me3Sn)2(2,5-pdc)]n (7), [(Ph3Sn)2(2,5-pdc)]n (8) and {[(PhCH2)3Sn]2(2,5-pdc)}n (9) were synthesized by the reaction of trimethyltin(IV), triphenyltin(IV) or tribenzyltin(IV) chloride with 2,6(3,5 or 2,5)-H2pdc (pdc = pyridinedicarboxylate) when triethylamine was added. Complexes 1-9 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR analyses. Among them complexes 1, 5 and 7 have also been characterized by X-ray crystallographic diffraction analyses. Complex 1 has a trinuclear structure and forms a 2D supramolecular structure due to the coordinated water molecules via hydrogen bonds to the pendant O atoms of the carboxyl groups and the N atoms derived of the pyridine ring. Complex 5 forms a 1D polymeric chain by the intermolecular Sn?N (N atom derived of pyridine ring) interactions. Complex 7 has a network structure where 2,5-pyridinedicarboxylate acts as a tetradentate ligand coordinated to trimethyltin(IV) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号