首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
光量子比特是量子计算和量子通信的理想候选体系之一。高效率、高品质、确定性的单光子源是实现光学量子计算和绝对安全量子通信的重要前提条件。自组装半导体量子点,又称“人造原子”,具有优良的单光子性和光子全同性,是理想的单光子源。此外,量子点可以通过外加电场,囚禁单个原子或空穴,作为光子-自旋比特的界面,构建可扩展光量子网络。微柱腔耦合的量子点,拥有很强的Purcell效应,在保持单光子性和光子全同性的同时,大大地提高了提取效率,且具有很好的相干性,可用于大规模量子计算。近年来,人们在二维单原子层材料中发现了非经典的单光子发射,使二维材料和量子光学领域得到了结合,开辟了新的研究路线:探索单原子层材料在量子技术的潜在应用。和传统固态单光子源系统相比,二维材料更易于与其他光电平台结合,可人为控制缺陷位置,有利于推动高品质、低成本单光子源的发展,得到了科学家的广泛关注。本报告首先从量子计算和量子通信两方面提出发展单光子源的意义,接着介绍单光子源的性质和产生原理,然后介绍单光子源在自组装半导体量子点和二维单原子层材料中的实现和发展,最后从光子-自旋量子隐形传态和玻色采样实验中讨论单光子源在量子计算和量子网络方面的应用前景。  相似文献   

2.
李萌  李础  李焱 《物理》2023,(8):542-551
玻璃基集成光量子芯片已经应用于量子计算、量子模拟、量子通信、量子精密测量等光量子信息处理领域,显示出强大的功能。文章从量子计算和量子模拟两个方面介绍利用飞秒激光三维高精度直写技术在玻璃中制备集成光量子芯片的重要进展。量子计算芯片包括面向通用量子计算的单比特到多比特光量子逻辑门以及用于解决特定问题的芯片,可实现玻色采样、量子快速傅里叶变换、量子快速到达等功能。在量子模拟方面,玻璃基光量子芯片成为研究关联粒子量子行走动力学和拓扑量子光子学的极佳平台,揭示了一维、二维和合成维度的离散以及连续时间量子行走的演化规律,展示了光子拓扑绝缘体的鲁棒性拓扑模式对量子态传输的保护作用等。  相似文献   

3.
正集成光学量子芯片技术,使用半导体微纳加工工艺实现各种核心光量子器件的片上集成,包括单光子源、量子态操控光路与量子态测量光路、以及单光子探测器等,从而可实现对量子信息的载体(单光子)进行处理、计算、传输和存储等功能~([1])。集成光学量子芯片技术具有稳定性高、性能好、体积小、制造成本低等优点,被认为是一种实现量子通信、量子计算和量子模拟等  相似文献   

4.
由于具有超短的脉冲宽度和极高的峰值强度,飞秒激光微加工是一种有效的材料加工方法, 已广泛应用于光子集成器件的加工。铌酸锂晶体具有优异的电光、非线性光学和压电特性,是集成 光学和导波光学中常见的材料。本文综述了飞秒激光对铌酸锂晶体的处理,重点介绍了飞秒激光加 工的物理原理及其制备的铌酸锂基光子器件的最新进展。飞秒激光技术使铌酸锂晶体在微纳光子学 领域具有广阔的应用前景。  相似文献   

5.
由于具有超短的脉冲宽度和极高的峰值强度,飞秒激光微加工是一种有效的材料加工方法,已广泛应用于光子集成器件的加工。铌酸锂晶体具有优异的电光、非线性光学和压电特性,是集成光学和导波光学中常见的材料。本文综述了飞秒激光对铌酸锂晶体的处理,重点介绍了飞秒激光加工的物理原理及其制备的铌酸锂基光子器件的最新进展。飞秒激光技术使铌酸锂晶体在微纳光子学领域具有广阔的应用前景。  相似文献   

6.
廖常俊  刘颂豪 《光子学报》2002,31(Z2):11-15
指出光量子信息传输与常规光通信不同的特点。量子信息的传输的载体选用单光子。单光子是由复振幅概率波迭加的波函数来表示的。其本征函数是一组完全正交的偏振态。量子编码即是由表征光子量子态的复数概率波振幅的变化来实现的,传输光纤的双折射和光子的偏振性质是要考虑的一个关键问题。指出用于量子信息编码的三组互为共轭的量子态之间的转化及相位调制对量子态演化的作用,由此比较了各种量子信息传输的方法。  相似文献   

7.
《光学学报》2021,41(8):169-194
铌酸锂光子集成是推动未来高速光通信和光信息处理领域变革性发展的重要前沿技术。介绍了利用铌酸锂光子芯片制造技术制备集成光路中关键光子结构与器件的最新研究进展。得益于单晶铌酸锂晶体的高非线性系数和强电光效应,利用制备的高性能铌酸锂光子器件演示了多种高效的非线性光学过程。  相似文献   

8.
《光学学报》2021,41(8):195-205
铌酸锂晶体是一种综合性质优异的多功能光学材料。在过去几十年里,对铌酸锂晶体的研究一直是光学研究的热点之一。近年来发展起来的绝缘体上铌酸锂(LNOI),亦称为铌酸锂薄膜(LNTF),在光学领域被公认为是一项变革性技术。基于LNOI的集成光子器件让铌酸锂晶体又焕发了新生命,再次成为集成光子学的研究焦点。作为最优秀的非线性晶体之一,铌酸锂薄膜在频率转换方面是其他薄膜材料无法替代的。总结了基于铌酸锂薄膜的非线性频率转换最新研究进展,包括二阶非线性、三阶非线性、级联非线性和光学频率梳等,最后对LNOI平台上光子集成回路(PIC)的前景进行了展望。  相似文献   

9.
二维光量子阱共振隧穿光谱特性的改善   总被引:1,自引:1,他引:0       下载免费PDF全文
用时域有限差分法研究了光子晶体量子阱中的量子化能态.研究发现,开腔与闭腔光量子阱结构共振透射峰的数目相同,位置几乎不变,但闭腔光量子阱出射光强更强,透射率更大,频率选择性更好,品质因子Q值更高.同时计算了开腔和闭腔光量子阱光场分布,结果表明,开腔光量子阱为行波阱,闭腔光量子阱为驻波阱,充分证实了闭腔光量子阱更能束缚光场的设想,对其作用机理进行了探讨.  相似文献   

10.
刘靖  孙军强  黄德修  黄重庆  吴铭 《物理学报》2007,56(4):2281-2285
在对称的均匀电介质材料光子晶体体系中插入另一折射率渐变的光子晶体可构成光量子阱结构.利用时域有限差分法计算了不同折射率分布光量子阱结构的传输谱.研究表明:束缚态是对处于垒光子晶体禁带中的阱光子晶体导通带的离散化,束缚态能级个数等于阱光子晶体结构单元的重复周期数;以渐变方式调整阱区折射率分布,可在特定频率范围内得到新的互不交叠的束缚态.这样在有限的禁带区域可以成倍增加光子束缚态而无需增大光量子阱结构的尺寸,使信道密度最大化、光波有效带宽的使用最优化.这种量子阱结构可用于制作超窄带滤波器和多通道窄带滤波器,有望在光通信超密集波分复用和光学精密测量技术中获得广泛应用. 关键词: 光量子阱 光子束缚态 渐变折射率 光子晶体  相似文献   

11.
铌酸锂,作为应用最广泛的非线性光学晶体之一,近十年来由于薄膜铌酸锂晶圆的出现而再次获得了学术界与产业界的关注.基于薄膜铌酸锂的集成光电子器件的优越性能已在诸多应用中得到演示,例如光信息处理、激光雷达、光学频率梳、微波光子学和量子光学等. 2020年,薄膜铌酸锂器件通过光刻技术在6 in(1 in=2.54 cm)晶圆上的成功制备,推动了铌酸锂加工从实验室逐步走向工业化.薄膜铌酸锂光子器件的研究主要聚焦于利用电光、声光和二阶/三阶非线性效应进行光调制或频率转换;最近三年,掺杂稀土离子还成功赋予铌酸锂增益特性,实现了片上铌酸锂放大器和激光器.本文将简略回顾薄膜铌酸锂的发展过程,着眼于集成光子器件,介绍国内外研究组取得的进展、意义以及面临的挑战.  相似文献   

12.
作为最早发现的非线性光学现象之一,非线性频率转换经过几十年的发展,从原理到应用均已不断成熟。非线性频率转换过程中新的相位匹配原理被不断提出和实现。除此之外,随着集成光学、结构光子学及量子光学等领域的不断发展,非线性频率转换在各领域的研究和应用又重新焕发活力,并发挥着不可替代的作用。本篇综述围绕非线性频率转换主题,突出非线性频率转换的新原理、新平台与新应用研究,并以本团队研究成果为基础,介绍相关领域的研究进展,主要分为以下几个方面:非线性界面相位匹配新原理;结构光场非线性谐波调控;铌酸锂薄膜集成非线性光学新平台;单光子频率转换、光量子接口等新应用。  相似文献   

13.
尚向军  马奔  陈泽升  喻颖  查国伟  倪海桥  牛智川 《物理学报》2018,67(22):227801-227801
介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.  相似文献   

14.
作为光子重要自由度之一,轨道角动量(OAM)在光量子信息研究中占据着重要地位。将其与偏振等光子的其他自由度相结合,可实现多自由度光量子信息处理。此外,由于其具有天然的离散高维属性,故其是开展高维量子信息处理研究的最佳自由度之一。基于自发参量下转换非线性光学过程能够便捷地获得OAM纠缠源。近年来,光子OAM量子纠缠的研究受到了广泛关注,在多自由度、高维和多光子等多个方向都取得了重要进展。然而,该领域尚有诸多悬而未决的关键科学问题亟须深入研究,包括如何实现高效高质的OAM分离,如何实现更高维度的频率转换,如何提升多自由度纠缠源的品质,如何获得更多维度、更多光子的高维纠缠态以及如何构建可行的高维量子门等。从光子OAM最基本的二维操纵着手,综述了单光子OAM量子态调控、双光子及多光子OAM纠缠操纵。围绕多自由度、大角动量和高维等特性,从生成、调控、测量及应用等角度系统讨论了光子OAM量子纠缠。同时,探索了解决本方向关键科学问题的一些可能解决途径。  相似文献   

15.
单光子纠缠态的纠缠转移和量子隐形传态   总被引:19,自引:19,他引:0  
使用光学分束器和单光子源,利用单光子态和真空态制备出了纠缠单光子态.利用光学分束器作用和单光子探测,实现了三个通讯伙伴之间的纠缠转移.提出了一个关于纠缠单光子态的量子隐形传态方案.在这个方案中,被传送的是一个未知的单光子纠缠态.通讯双方使用的量子信道是两个单光子纠缠态.通过使用分束器作用和对输出态进行光子测量以及在经典信息的帮助下,纠缠转移和量子隐形传态的过程被完成.  相似文献   

16.
基于单光子脉冲时间随机性的光量子随机源   总被引:1,自引:0,他引:1  
鄢秋荣  赵宝升  刘永安  盛立志 《光学学报》2012,32(3):327001-302
提出了一种基于单光子脉冲时间随机性的光量子随机源。利用衰减成单光子态的光强恒定光源和一个单光子探测器产生单光子随机脉冲,通过连续比较单光子随机脉冲序列中相邻两个脉冲的时间间隔来提取随机位。通过设计高速响应的微通道板单光子探测器和基于现场可编程门阵列(FPGA)的随机位提取电路,获得了超过10Mbit/s的随机位产生速率。通过采用恒比定时和对计数时钟倍频的方法提高时间间隔的测量精度,从而减小随机位序列的相关系数。当光量子随机源的随机位产生速率在10kbit/s以下时,所获得的二进制随机位序列的相关系数小于0.001。运用随机性测试程序ENT和DIEHARD对所获的随机位序列进行测试,测试结果表明序列的随机性非常好且不需要后续处理,完全满足真随机数的标准。  相似文献   

17.
张安宁  陈宇翱  赵志  杨涛  潘建伟 《物理》2005,34(2):96-103
在实验上发展了多光子纠缠技术,利用已有的四光子纠缠技术结合新发展的单光子源技术,在世界上第一次实现了五光子纠缠.并在此基础上实现了新型的量子隐形传态——终端开放的隐形传态.实验结果在量子力学基础问题的检验、信息论、密码学和量子计算等重要应用方向上,都具有显著的意义和价值.实验方法将大大促进未来网络化量子通信、线性光学量子计算、量子力学基础检验等重要科学问题的研究。  相似文献   

18.
《光学学报》2021,41(8):240-257
单光子和多光子量子态的制备与操控对量子信息技术的发展和应用至关重要。在实现量子器件小型化和集成化的基础上对量子态进行有效制备和操控是目前量子信息技术研究领域的前沿问题。作为一种平面光学人工微结构阵列,超表面能够在亚波长尺度上实现对光场振幅、相位和偏振态等多个维度的有效控制,为微纳光学器件的设计提供了一种全新方式。近期研究表明,高效率超表面是实现小型化和集成化量子器件的理想平台。总结了近年来可见光和近红外波段高效率超表面的设计原理及其应用方向,并在此基础上对超表面在提高单光子发射器性能方面和在多光子纠缠态制备与操控方面的重要工作进行了总结。  相似文献   

19.
单光子源是实现量子密匙分配、线性光学量子计算的基本单元。作者回顾了单光子源在量子信息科学发展中的作用,讨论了光子的统计特性,分析了具有类似原子二能级结构的半导体量子点作为单光子发射源的特点,介绍了微腔与二能级系统的耦合以及微腔量子电动力学基本原理。在弱耦合区,Purcell效应导致微腔中量子点激子复合寿命降低,因此可用微腔来改善量子点单光子发射效率。文章总结了近年来在半导体微腔增强量子点单光子发射领域的进展,探讨了分布式布拉格反射微腔、柱状微腔和光子晶体微腔等结构对改善半导体量子点单光子发射和收集效率、光子极化以及光子全同性等方面的作用,并对未来半导体量子点单光子源的发展进行了展望。  相似文献   

20.
任宝藏  邓富国 《物理学报》2015,64(16):160303-160303
光子系统在量子信息处理和传输过程中有非常重要的应用. 譬如, 利用光子与原子(或人工原子)之间的相互作用, 可以完成信息的安全传输、存储和快速的并行计算处理等任务. 光子系统具有多个自由度, 如极化、空间模式、轨道角动量、时间-能量、频率等自由度. 光子系统的多个自由度可以同时应用于量子信息处理过程. 超并行量子计算利用光子系统多个自由度的光量子态同时进行量子并行计算, 使量子计算具有更强的并行性, 且需要的量子资源少, 更能抵抗光子数损耗等噪声的影响. 多个自由度同时存在纠缠的光子系统量子态称为超纠缠态, 它能够提高量子通信的容量与安全性, 辅助完成一些重要的量子通信任务. 在本综述中, 我们简要介绍了光子系统两自由度量子态在量子信息中的一些新应用, 包括超并行量子计算、超纠缠态分析、超纠缠浓缩和纯化三个部分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号