首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable encapsulation of medically active compounds can lead to longer storage life and facilitate the slow-release mechanism. In this work, the dynamic and molecular interactions between plumbagin molecule with β-cyclodextrin (BCD) and its two derivatives, which are dimethyl-β-cyclodextrin (MBCD), and 2-O-monohydroxypropyl-β-cyclodextrin (HPBCD) were investigated. Molecular dynamics simulations (MD) with GLYCAM-06 and AMBER force fields were used to simulate the inclusion complex systems under storage temperature (4 °C) in an aqueous solution. The simulation results suggested that HPBCD is the best encapsulation agent to produce stable host–guest binding with plumbagin. Moreover, the observation of the plumbagin dynamic inside the binding cavity revealed that it tends to orient the methyl group toward the wider rim of HPBCD. Therefore, HPBCD is a decent candidate for the preservation of plumbagin with a promising longer storage life and presents the opportunity to facilitate the slow-release mechanism.  相似文献   

2.
Removal of steroid hormones from aqueous environment is of prevailing concern because of their adverse impact on organisms. Using biochar derived from biomass as adsorbent to remove pollutants has become more popular due to its low cost, effectiveness, and sustainability. This study evaluated the feasibility of applying corn straw biochar (CSB) and dewatered sludge biochar (DSB) to reduce 17β-estradiol (E2) from aquatic solutions by adsorption. The experimental results showed that the adsorption kinetics and isotherm behavior of E2 on the two biochars were well described by the pseudo-second-order (R2 > 0.93) and Langmuir models (R2 > 0.97). CSB has higher E2 adsorption capacity than DSB, and the maximum adsorption capacity was 99.8 mg/g obtained from Langmuir model at 298 K, which can be attributed to the higher surface area, porosity, and hydrophobicity of this adsorbent. Higher pH levels (>10.2) decreased the adsorption capacities of biochar for E2, while the ionic strength did not significantly affect the adsorption process. The regeneration ability of CSB was slightly better than that of DSB. The possible adsorption mechanism for E2 on biochar is suggested as π–π interactions, H–bonding, and micropores filling. These results indicated that CSB has more potential and application value than DSB on reducing E2 from aqueous solutions when considering economy and removal performance.  相似文献   

3.
The catalyst-free conjugate addition of pyrroles to β-Fluoro-β-nitrostyrenes was investigated. The reaction was found to proceed under solvent-free conditions to form 2-(2-Fluoro-2-nitro-1-arylethyl)-1H-pyrroles. The effectiveness of this approach was demonstrated through the preparation of a series of the target products in a quantitative yield. The kinetics of a conjugate addition of pyrrole was studied in detail to reveal the substituent effect and activation parameters of the reaction. The subsequent base-induced elimination of nitrous acid afforded a series of novel 2-(2-Fluoro-1-arylvinyl)-1H-pyrroles prepared in up to an 85% isolated yield. The two-step sequence herein proposed is an indispensable alternative to a direct reaction with elusive and unstable 1-Fluoroacetylenes.  相似文献   

4.
Water pollution by various toxic substances remains a serious environmental problem, especially the occurrence of organic micropollutants including endocrine disruptors, pharmaceutical pollutants and naphthol pollutants. Adsorption process has been an effective method for pollutant removal in wastewater treatment. However, the thermal regeneration process for the most widely used activated carbon is costly and energy-consuming. Therefore, there has been an increasing need to develop alternative low-cost and effective adsorption materials for pollutant removal. Herein, β-cyclodextrin (β-CD), a cheap and versatile material, was modified with methacrylate groups by reacting with methacryloyl chloride, giving an average degree of substitution of 3 per β-CD molecule. β-CD-methacrylate, which could function as a crosslinker, was then copolymerized with acrylamide monomer via free-radical copolymerization to form β-CD-polyacrylamide (β-CD-PAAm) hydrogel. Interestingly, in the structure of the β-CD-PAAm hydrogel, β-CD is not only a functional unit binding pollutant molecules through inclusion complexation, but also a structural unit crosslinking PAAm leading to the formation of the hydrogel 3D networks. Morphological studies showed that β-CD-PAAm gel had larger pore size than the control PAAm gel, which was synthesized using conventional crosslinker instead of β-CD-methacrylate. This was consistent with the higher swelling ratio of β-CD-PAAm gel than that of PAAm gel (29.4 vs. 12.7). In the kinetic adsorption studies, phenolphthalein, a model dye, and bisphenol A, propranolol hydrochloride, and 2-naphthol were used as model pollutants from different classes. The adsorption data for β-CD-PAAm gel fitted well into the pseudo-second-order model. In addition, the thermodynamic studies revealed that β-CD-PAAm gel was able to effectively adsorb the different dye and pollutants at various concentrations, while the control PAAm gel had very low adsorption, confirming that the pollutant removal was due to the inclusion complexation between β-CD units and pollutant molecules. The adsorption isotherms of the different dye and pollutants by the β-CD-PAAm gel fitted well into the Langmuir model. Furthermore, the β-CD-PAAm gel could be easily recycled by soaking in methanol and reused without compromising its performance for five consecutive adsorption/desorption cycles. Therefore, the β-CD-PAAm gel, which combines the advantage of an easy-to-handle hydrogel platform and the effectiveness of adsorption by β-CD units, could be a promising pollutant removal system for wastewater treatment applications.  相似文献   

5.
A diastereoselective synthesis of the β-anomer of glycinamide ribonucleotide (β-GAR) has been developed. The synthesis was accomplished in nine steps from D-ribose and occurred in 5% overall yield. The route provided material on the multi-milligram scale. The synthetic β-GAR formed was remarkably resistant to anomerization both in solution and as a solid.  相似文献   

6.
α-Functionalized α,β-unsaturated aldehydes is an important class of compounds, which are widely used in fine organic synthesis, biology, medicine and pharmacology, chemical industry, and agriculture. Some of the 2-substituted 2-alkenals are found to be the key metabolites in plant and animal cells. Therefore, the development of efficient methods for their synthesis attracts the attention of organic chemists. This review focusses on the recent advances in the synthesis of 2-functionally substituted 2-alkenals. The approaches to the preparation of α-alkyl α,β-unsaturated aldehydes are not included in this review.  相似文献   

7.
Soluble aggregation of amyloid β-peptide 1-42 (Aβ42) and deposition of Aβ42 aggregates are the initial pathological hallmarks of Alzheimer’s disease (AD). The bipolar nature of Aβ42 molecule results in its ability to assemble into distinct oligomers and higher aggregates, which may drive some of the phenotypic heterogeneity observed in AD. Agents targeting Aβ42 or its aggregates, such as anti-Aβ42 antibodies, can inhibit the aggregation of Aβ42 and toxicity of Aβ42 aggregates to neural cells to a certain extent. However, the epitope specificity of an antibody affects its binding affinity for different Aβ42 species. Different antibodies target different sites on Aβ42 and thus elicit different neuroprotective or cytoprotective effects. In the present review, we summarize significant information reflected by anti-Aβ42 antibodies in different immunotherapies and propose an overview of the structure (conformation)−toxicity relationship of Aβ42 aggregates. This review aimed to provide a reference for the directional design of antibodies against the most pathogenic conformation of Aβ42 aggregates.  相似文献   

8.
An attempt was made to evaluate the possibility of creating and assessing the stability of inclusion complexes of selected phenolic acids [trans-4-hydroxycinnamic acid (trans-p-coumaric acid), trans-3,4-dihydroxycinnamic acid (trans-caffeic acid), trans-4-hydroxy-3-methoxycinnamic acid, (trans-ferulic acid) and trans-3-phenylacrylic acid (trans-cinnamic acid)] with β-cyclodextrin and 2-HP-β-cyclodextrin in aqueous solutions in a wide temperature range 283.15 K–313.15 K. On the basis of the values of the limiting molar conductivity CDNaDod), calculated from the experimental data, the values of the formation constants and the thermodynamic functions of formation (standard enthalpy, entropy, and Gibs standard enthalpy) of the studied complexes were determined. It has been found that the stability of the studied complexes increases with lowering of the molar mass of cyclodextrin and lowering of the temperature.  相似文献   

9.
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands.  相似文献   

10.
Poorly crystalline and well-dispersed hydroxyapatite (HAP) nanoparticles were synthesized and used as novel adsorbents for the removal of Cu(II) from aqueous solution. Various factors affecting the adsorption such as adsorbent crystallinity, pH, adsorbent dosage, contact time, temperature, competing cations, and the presence of humic acid were investigated in detail. Results showed that the HAP calcined at lower temperature was poorly crystalline and had better adsorption capacity for Cu(II) than those calcined at higher temperature. Cu(II) removal was increased with increases of pH, adsorbent dosage, temperature, and the presence of humic acid, but decreased as the existence of competing divalent cations. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Langmuir model, and the estimated maximum adsorption capacity of poorly crystalline HAP was 41.80 mg/g at 313 K, displaying higher efficiency for Cu(II) removal than many previously reported adsorbents. Thermodynamics studied revealed that the adsorption of Cu(II) by poorly crystalline HAP was spontaneous, endothermic, and entropy-increasing in nature. This study showed that poorly crystalline HAP could be used as an efficient adsorbent material for the removal of Cu(II) from aqueous solution.  相似文献   

11.
The extraction of phenolic compounds from olive mill wastes is important, not only to avoid environmental damages, but also because of the intrinsic value of those biophenols, well-known for their high antioxidant potential and health benefits. This study focuses on tyrosol (Tyr) and hydroxytyrosol (HT), two of the main phenolic compounds found in olive mill wastes. A new, simple, and eco-friendly extraction process for the removal of phenolic compounds from aqueous solutions using native β-cyclodextrin (β-CD) in the solid state has been developed. Several β-CD/biophenol molar ratios and biophenol concentrations were investigated, in order to maintain β-CD mostly in the solid state while optimizing the extraction yield and the loading capacity of the sorbent. The extraction efficiencies of Tyr and HT were up to 61%, with a total solid recovery higher than 90% using an initial concentration of 100 mM biophenol and 10 molar equivalents of β-CD. The photochemical stability of the complexes thus obtained was estimated from ∆E*ab curve vs. illumination time. The results obtained showed that the phenols encapsulated into solid β-CD are protected against photodegradation. The powder obtained could be directly developed as a safe-grade food supplement. This simple eco-friendly process could be used for extracting valuable biophenols from olive mill wastewater.  相似文献   

12.
Estrogen contamination is widespread and microbial degradation is a promising removal method; however, unfavorable environments can hinder microbial function. In this study, a natural estrogen 17β-estradiol (E2) was introduced as a degradation target, and a new combination of bacterial carrier was investigated. We found the best combination of polyvinyl alcohol (PVA) and sodium alginate (SA) was 4% total concentration, PVA:SA = 5:5, with nano-Fe3O4 at 2%, and maltose and glycine added to promote degradation, for which the optimal concentrations were 5 g·L−1 and 10 g·L−1, respectively. Based on the above exploration, the bacterial carrier was made, and the degradation efficiency of the immobilized bacteria reached 92.3% in 5 days. The immobilized bacteria were reused for three cycles, and the degradation efficiency of each round could exceed 94%. Immobilization showed advantages at pH 5, pH 11, 10 °C, 40 °C, and 40 g·L−1 NaCl, and the degradation efficiency of the immobilized bacteria was higher than 90%. In the wastewater, the immobilized bacteria could degrade E2 to about 1 mg·L−1 on the 5th day. This study constructed a bacterial immobilization carrier using a new combination, explored the application potential of the carrier, and provided a new choice of bacterial immobilization carrier.  相似文献   

13.
β-Hydroxy sulfones are important in organic synthesis. The simplest method of β-hydroxy sulfones synthesis is the hydrogenation of β-keto sulfones. Herein, we report the reducing properties of alkyl aluminum compounds R3Al (R = Et, i-Bu, n-Bu, t-Bu and n-Hex); i-Bu2AlH; Et2AlCl and EtAlCl2 in the hydrogenation of β-keto sulfones. The compounds i-Bu2AlH, i-Bu3Al and Et3Al are the at best reducing agents of β-keto sulfones to β-hydroxy sulfones. In reactions of β-keto sulfones with aluminum trialkyls, hydroalumination products with β-hydroxy sulfone ligands [R2AlOC(C6H5)CH2S(O)2(p-R1C6H4]n [where n = 1,2; 2aa: R = i-Bu, R1 = CH3; 2ab: R = i-Bu, R1 = Cl; 2ba: R = Et, R1 = CH3; 2bb: R = Et, R1 = Cl] and {[Et2AlOC(C6H5)CH2S(O)2(p-ClC6H4]∙Et3Al}n 3bb were obtained. These complexes in the solid state have a dimeric structure, while in solutions, they appear as equilibrium monomer–dimer mixtures. The hydrolysis of both the isolated 2aa, 2ab, 2ba, 2bb and 3bb and the postreaction mixtures quantitatively leads to pure racemic β-hydroxy sulfones. Hydroalumination reaction of β-keto sulfones with alkyl aluminum compounds and subsequent hydrolysis of the complexes is a simple and very efficient method of β-hydroxy sulfones synthesis.  相似文献   

14.
Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells. Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated and identified four steroids and four fatty acids from the active fraction. All eight compounds were evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates, only (3β,5α,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3β,5α,22E)-ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor α (ERα). We found that (3β,5α,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK, PI3K, Akt, and ERα. Together, these experimental results suggest that (3β,5α,22E)-ergost-22-en-3-ol is responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic activity in menopause.  相似文献   

15.
All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer’s disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-β (Aβ) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbiprofen (tarenflurbil) was studied in this regard but failed to show significant improvement in AD patients in a phase 3 clinical trial. This was mainly attributed to its low ability to cross the blood–brain barrier (BBB). Here, we present the synthesis and in vitro evaluation of a racemic meta-carborane analogue of flurbiprofen. By introducing the carborane moiety, the hydrophobicity could be shifted into a more favourable range for the penetration of the blood–brain barrier, evident by a logD7.4 value of 2.0. Furthermore, our analogue retained γ-secretase modulator activity in comparison to racemic flurbiprofen in a cell-based assay. These findings demonstrate the potential of carboranes as phenyl mimetics also in AD research.  相似文献   

16.
Osteoporosis is a systemic metabolic bone disorder that is caused by an imbalance in the functions of osteoclasts and osteoblasts and is characterized by excessive bone resorption by osteoclasts. Targeting osteoclast differentiation and bone resorption is considered a good fundamental solution for overcoming bone diseases. β-boswellic acid (βBA) is a natural compound found in Boswellia serrata, which is an active ingredient with anti-inflammatory, anti-rheumatic, and anti-cancer effects. Here, we explored the anti-resorptive effect of βBA on osteoclastogenesis. βBA significantly inhibited the formation of tartrate-resistant acid phosphatase-positive osteoclasts induced by receptor activator of nuclear factor-B ligand (RANKL) and suppressed bone resorption without any cytotoxicity. Interestingly, βBA significantly inhibited the phosphorylation of IκB, Btk, and PLCγ2 and the degradation of IκB. Additionally, βBA strongly inhibited the mRNA and protein expression of c-Fos and NFATc1 induced by RANKL and subsequently attenuated the expression of osteoclast marker genes, such as OC-STAMP, DC-STAMP, β3-integrin, MMP9, ATP6v0d2, and CtsK. These results suggest that βBA is a potential therapeutic candidate for the treatment of excessive osteoclast-induced bone diseases such as osteoporosis.  相似文献   

17.
The purpose of this study is to develop peptide-based platelet-derived growth factor receptor β (PDGFRβ) imaging probes and examine the effects of several linkers, namely un-natural amino acids (D-alanine and β-alanine) and ethylene-glycol (EG), on the properties of Ga-DOTA-(linker)-IPLPPPRRPFFK peptides. Seven radiotracers, 67Ga-DOTA-(linker)-IPLPPPRRPFFK peptides, were designed, synthesized, and evaluated. The stability and cell uptake in PDGFRβ positive peptide cells were evaluated in vitro. The biodistribution of [67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) and [67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28), which were selected based on in vitro stability in murine plasma and cell uptake rates, were determined in BxPC3-luc-bearing nu/nu mice. Seven 67Ga-labeled peptides were successfully synthesized with high radiochemical yields (>85%) and purities (>99%). All evaluated radiotracers were stable in PBS (pH 7.4) at 37 °C. However, only [67Ga]27 and [67Ga]28 remained more than 75% after incubation in murine plasma at 37 °C for 1 h. [67Ga]27 exhibited the highest BxPC3-luc cell uptake among the prepared radiolabeled peptides. As regards the results of the biodistribution experiments, the tumor-to-blood ratios of [67Ga]27 and [67Ga]28 at 1 h post-injection were 2.61 ± 0.75 and 2.05 ± 0.77, respectively. Co-injection of [67Ga]27 and an excess amount of IPLPPPRRPFFK peptide as a blocking agent can significantly decrease this ratio. However, tumor accumulation was not considered sufficient. Therefore, further probe modification is required to assess tumor accumulation for in vivo imaging.  相似文献   

18.
Soy diet is thought to help prevent cardiovascular diseases in humans. Isoflavone, which is abundant in soybean and other legumes, has been reported to possess antiplatelet activity and potential antithrombotic effect. Our study aims to elucidate the potential target of soy isoflavone in platelet. The anti-thrombosis formation effect of genistein and daidzein was evaluated in ex vivo perfusion chamber model under low (300 s−1) and high (1800 s−1) shear forces. The effect of genistein and daidzein on platelet aggregation and spreading was evaluated with platelets from both wildtype and GPIbα deficient mice. The interaction of these soy isoflavone with 14-3-3ζ was detected by surface plasmon resonance (SPR) and co-immunoprecipitation, and the effect of αIIbβ3-mediated outside-in signaling transduction was evaluated by western blot. We found both genistein and daidzein showed inhibitory effect on thrombosis formation in perfusion chamber, especially under high shear force (1800 s−1). These soy isoflavone interact with 14-3-3ζ and inhibited both GPIb-IX and αIIbβ3-mediated platelet aggregation, integrin-mediated platelet spreading and outside-in signaling transduction. Our findings indicate that 14-3-3ζ is a novel target of genistein and daidzein. 14-3-3ζ, an adaptor protein that regulates both GPIb-IX and αIIbβ3-mediated platelet activation is involved in soy isoflavone mediated platelet inhibition.  相似文献   

19.
Metastasis is an important cause of cancer-related death. Previous studies in our laboratory found that pregnane alkaloids from Pachysandra terminalis had antimetastatic activity against breast cancer cells. In the current study, we demonstrated that treatment with one of the alkaloid derivatives, (Z)-3β-ethylamino-pregn-17(20)-en (1), led to the downregulation of the HIF-1α/VEGF/VEGFR2 pathway, suppressed the phosphorylation of downstream molecules Akt, mTOR, FAK, and inhibited breast cancer metastasis and angiogenesis both in vitro and in vivo. Furthermore, the antimetastasis and antiangiogenesis effects of 1 treatment (40 mg/kg) were more effective than that of Sorafenib (50 mg/kg). Surface plasmon resonance (SPR) analysis was performed and the result suggested that HSP90α was a direct target of 1. Taken together, our results suggested that compound 1 might represent a candidate antitumor agent for metastatic breast cancer.  相似文献   

20.
Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3β4 nicotinic acetylcholine receptors (α3β4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3β4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the β4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor’s ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号