首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对国内外各种失超检测方法优缺点的比较,本文选取有源功率检测法来实现超导线圈的失超检测,并针对超导线圈电感值相等和电感值不等两种情况对有源功率失超检测电路进行了改进以及实验验证.结果表明,该失超检测方法能够及时准确的检测到失超信号,为超导线圈的失超保护提供了可靠的前提条件.  相似文献   

2.
EAST装置做为全超导托卡马克装置,其纵场和极向场线圈全部由超导磁体组成,所以进行安全,准确,有效的超导线圈的失超保护是装置安全运行的首要环节.由于等离子体电流的建立必须由极向场线圈系统提供极快速的磁通变化,随之产生较高的交流损耗使得极向场线圈很容易发生失超.如何对快速交变脉冲磁场下的超导线圈进行有效的失超检测,这在世界上也无先例可循.EAST装置的失超检测系统经过几十轮单饼超导线圈实验及多轮装置正式放电实验后逐步建立和完善起来,并已通过工程验收满足了装置实验运行要求.本文主要介绍了EAST装置失超检测系统的基本结构和检测原理,重点阐述了极向场超导磁体失超检测的设计方法及实验结果。  相似文献   

3.
研究了时效热处理的Nb50wt%Ti和Nb46.5wt%Ti合金在经历不同程度最终冷变形后,它们的超导转变温度的变化。研究发现:当最终真应变≥2.5时,NbTi合金(420℃×40h三次热处理)的超导转变温度随最终真应变增加而线性下降。针对该实验结果,本文在理论机制上进行了探讨。  相似文献   

4.
我国第一个稳态强磁场装置——合肥20T 混合磁体系统正在建造中.装置中的超导线圈已经绕制完成并作了性能试验.这是一个口径为320mm 的密绕线圈,其中心磁均高于8.3T,储能超过2MJ.本文报道了线圈的设计,绕制和实验结果.  相似文献   

5.
本给出了超导Wiggler磁体的初步实验结果,讨论了的心对磁场的贡献,提出了磁体性能改善的措施。  相似文献   

6.
本文研究了Nb片和Ti片在不同温度下的扩散行为,并利用Nb片和Ti片交替组配加工,经过扩散反应制备出了NbTi超导线.运用扫描电镜(SEM)观察了Nb/Ti界面的扩散形态及微结构,并对热处理工艺的合理选择进行了讨论.结果表明:经800℃,5小时扩散可得到厚度最大,Ti含量最高的NbTi超导相.该工艺制备出的NbTi超导线材的临界电流密度Jc可达到2800A/mm^2(5T、4.2K)和4200A/mm^2(3T、4.2K),与传统工艺制备出的超导体的性能相当.  相似文献   

7.
一个测试CICC超导电缆性能的磁体试验装置已在中科院等离子体所建成,该装置包括一个5T-138mm口径的长均匀背场超导磁体、一对可产生10T/s磁场变化率的脉冲超导磁体,以及人工超临界氦系统,它可以将高压室温氦气通过冷却变成可以冷却超导CICC导体的超临界氦,该装置能完全模拟环流器中迫流冷却式超导磁体导体所受到的诸如极向场磁体放电和等离子体破裂诸种强扰动的环境,测试CICC导体的性能,本文详细介绍了装置各部分参数和低温实验中测到的性能。  相似文献   

8.
基于系统运行安全的考虑,在大型的超导装置研制过程中,主要采用全稳定化的低电阻率的铝和铜作为稳定化基材的超导复翕地体。本考虑了大型导体中电流扩散行烃地正常区域传播速度的最小失超能量的影响,研究了全稳定化的NbTi/Cu/Al超导复合导体的失超特性。  相似文献   

9.
肖立业  林良真 《物理》2000,29(03):131-140
人们认为,超导体在电力方面出现大规模应用的时间距离我们还非常遥远.然而,随着最近几年来实用高温超导材料的研制取得重大的进展,高温超导电力技术的应用已经成为现实,预期将在2010年左右出现大规模的应用,并将带来电力工业的革命.因此,下一个10年将是国际超导技术竞争最关键的10年.我国的经济发展很快,电能需求量增加十分迅速,对电能质量的要求也越来越高.常规电力技术已经无法满足我国电力发展的需要,超导电力技术是实现我国电力发展目标的必由之路.文章有代表性地介绍了超导电缆、超导限流器、超导磁储能系统、超导变压器和超导旋转电机等的基本工作原理及研究发展历史,并着重介绍高温超导电力应用研究的现状、应用前景、经济可行性及基本物理问题.  相似文献   

10.
11.
宋立东 《物理实验》2004,24(10):2-2
我们知道,物体根据其导电与否可以分为绝缘体和导体,导体相对绝缘体来说本质区别是它们的电阻率不同.如果某一物体的电阻变为零会出现超导现象.电阻率为零,即完全没有电阻的状态称为超导态.超导是超导电性的简称,它是指金属、合金或其它材料电阻变为零的性质。  相似文献   

12.
13.
利用Nb片和Ti片交替组配加工,经扩散反应制备了Ti含量从43WT%到57WT%之间的三种不同成份的NbTi超导线.测量了三种不同成份的临界电流密度Jc,讨论了在磁场下不同Ti含量对NbTi线临界电流密度Jc的影响,并对磁通钉扎机制进行了分析.通过扫描电镜(SEM)观察了Nb/Ti界面扩散形态及微结构,并运用多源标度分析法[1]对不同成份的NbTi超导线进行了磁通钉扎力密度随磁场变化曲线的拟合.结果表明:随着含Ti量的增加,其临界电流密度在低场时很高,而在高场时的性能偏低,且下降迅速,而含Ti量低的超导线在高场时的性能更具有优势;超导线在不同磁场下的性能是由点钉扎和面钉扎两种钉扎机制共同作用决定的.  相似文献   

14.
崔春艳  胡新宁  程军胜  王晖  王秋良 《物理学报》2015,64(1):18403-018403
在超导磁悬浮支承系统中, 如果被悬浮的超导球形转子是一个理想的球体, 并且是表现出完全的迈斯纳态, 那么由于球体的对称性, 就不会产生干扰力矩. 但实际的情况并非如此, 一般情况下, 超导球形转子总是存在加工制造误差, 且在高速旋转时总是存在离心变形, 因此转子的表面并不是理想的球面, 当超导转子悬浮在磁场中时, 沿转子表面法线方向的磁悬浮力, 不是完全通过转子质心, 将会产生磁支承干扰力矩, 从而引起转子的漂移误差. 本文从超导转子磁支承干扰力矩的物理机理出发, 对干扰力矩及其引起的漂移误差进行了分析, 包括转子非球形产生的一次干扰力矩、转子非球形与失中度和装配误差产生的二次干扰力矩, 并推导出了磁支承干扰力矩引起的漂移率计算公式, 代入转子参数计算出各种干扰力矩引起的漂移率大小, 为转子漂移测试和系统误差补偿提供了参考, 对于转子的结构优化设计具有指导意义.  相似文献   

15.
中国科学院上海应用物理研究所正在研制一台50周期的低温超导波荡器模型机用于上海同步辐射光源装置,磁体绕组采用NbTi超导线,周期长度16mm,磁间隙9.5mm,运行电流为400A,目标峰值磁场0.67T。磁体储能为7.2kJ。为了保证模型机安全稳定的运行,采用基于有限元方法的数值模拟,将50周期磁体简化为绕组模型并分析其失超过程,根据实验与分析结果提出失超保护设计方案。将50周期磁体的上下两部分作为两段,每段通过失超探测仪进行监测,并通过并联背靠背的冷二极管进行保护。为了使设计尽可能简化并限制磁体端部电压,没有采用主动加热器与引能电阻。  相似文献   

16.
马衍伟 《物理》2015,44(10):674-683
超导技术是21世纪具有重大经济和战略意义的高新技术,在国民经济诸多领域具有广阔的应用前景,如在超导弱电应用中的超导量子干涉器、滤波器;在超导强电应用中的电缆、限流器、电机、储能系统、变压器、磁体技术、医疗核磁共振成像、高能物理实验和高速交通输运等。实用化超导材料是超导技术发展的基础。目前,国际上发现的实用化超导材料主要有低温超导线材、铋系高温超导带材、YBCO涂层导体、MgB2线带材以及新型铁基超导线带材。文章在简要介绍超导材料发展历程的基础上,重点综述了上述实用化超导材料制备及加工、性能和应用方面的最新研究进展,并对相关领域存在的问题及今后的发展作出展望。  相似文献   

17.
混合型高温超导发电机采用高温超导带材作励磁材料,结构上与传统电机有较大的不同,设计方法也不尽相同.本文基于傅里叶变换将超导发电机的励磁集中绕组等效为沿转子圆周正弦分布的激励源,建立了超导发电机磁场分析模型.对电机气隙磁场分布进行了求解,并分析了不同绕组张角时气隙磁密波形中的谐波含量.通过参数化分析,研究了不同环境屏、转子的尺寸对电机功率密度的影响.采用有限元法对磁场求解结果进行了验证,结果一致性较好.研究结果表明,励磁绕组张角会对电机气隙磁密波形产生影响,合理设置超导发电机环境屏及转子结构,可以提高超导发动机的功率密度.  相似文献   

18.
国家大科学工程"稳态强磁场装置"混合磁体的外超导磁体采用了管内电缆导体(CICC)方案,CICC超导接头就成为建设强磁场装置的关键技术之一.针对混合磁体的结构和工作模式,我们设计了两种新型结构、满足不同连接需要的CICC导体超导接头,并对研制的超导接头样品在4.2K低温下进行了性能测试,其各项性能满足了稳态强磁场混合磁体外超导磁体的工作要求.本文将主要介绍该超导接头的设计方案以及整个研制过程.  相似文献   

19.
通过和普通导体线圈比较,从超导线圈内磁通量保持不变的性质出发,讨论了不同情况下超导线圈中感应电流的大小、方向和持续时间等方面的特点.  相似文献   

20.
分别用曲线法和定点法测定了三个具有不同剩余电阻比的NbTi超导线样品在低温下的剩余电阻。最大的相对差别为0.5%。从而证实了定点法是一种简单,有效NbTi超导线剩余电阻比测定方法。在定点法,需准确测定相对零电势电位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号