首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyaluronate-hydroxyethyl acrylate blend hydrogels were investigated as matrices for controlled release devices. Glycidyl methacrylate (GMA) derivatized HA (GMA-HA) was synthesized by coupling of GMA to HA in the presence of a suitable catalyst. These hydrogels were prepared by a free radical copolymerization of GMA-HA and hydroxyethyl acrylate. The water content of these hydrogels at equilibrium swelling in water (Ww) was 0.978+/-0.0073 (n=18); however, these hydrogel was mechanically tough and could be used as disk shape. The hydrogels swelling were found to depend on ionic strength and pH. The dried hydrogels quickly regained their original condition in water, and they swelled to more than 90% of its initial water contents after 30 min. This swelling-deswelling behavior was reproducible. The release of chlorpromazine HCl as a model cationic drug from the gels was suppressed significantly in water. The release increased with increasing the ionic strength and decreasing pH of bulk solutions.  相似文献   

2.
The Sephadex gels were introduced for their molecular-sieve-like properties. For some types of solute, however, they exhibit affinity for which the presence of water seems mandatory. Partitioning in these gels has been attributed to steric exclusion, hydrophobic interactions, dispersion interactions, etc. but may be due to a common structural feature, possibly a cavitary structure. Structural and partitioning similarities between the Sephadex gels and the cycloamyloses support this concept. A simple cavitary model vicinal water shell (CVS) is proposed in which the selectivity of the gel depends essentially on internal partitioning between a two phase system consisting of a vicinal-matrix-perturbed water shell lining the cavity and a core of normal (bulk) water. The CVS model cannot be used as yet to predict Kd values from the physico-chemical properties of the gels alone. The starting point is a known Kd value in one gel and the Kd value of the same solute in another gel is then calculated using the physical-chemical properties. The model was tested on several solutes and yielded promising results. Its implications are discussed.  相似文献   

3.
水溶性高分子经化学交联可得水凝胶 ,水凝胶也可由水溶性高分子经物理交联如部分结晶微区 ,疏水相互作用及缠绕交联得到 .线型水溶性高分子在水中以高浓度溶解时 ,高分子链之间相互搭迭缠绕也能形成物理“交联” .Kitano[1~ 4 ] 等研究了聚环氧乙烷、聚丙烯酸、聚丙烯酰胺和聚乙烯基吡咯烷酮等亲水性高分子水溶液中水分子间的氢键缺损情况 ,在重量浓度相同的情况下 ,随着分子量的增大 ,水分子间的氢键缺损加剧 .他们认为分子量大 ,高分子之间的缠绕就比较严重 ,在水溶液中就会形成许多小的微区 ,水分子在这些小微区中形成分子间氢键…  相似文献   

4.
Polymer brushes of water‐soluble polymers, poly(2‐hydroxyethyl acrylate) (PHEA) and poly(poly(oxyethyleneglycol)methylether acrylate) (PPEGA), were synthesized on a silicon wafer and a silica particle by applying photo‐induced organotellurium‐mediated radical polymerization to surface‐initiated graft polymerization. High graft densities were obtained, corresponding to reduced graft densities of about 0.32 and 0.42 for the PHEA and PPEGA brushes, respectively. These values were high enough to be categorized in the regime of “concentrated” polymer brushes (CPBs). Atomic force microscopic (AFM) study revealed that the CPB of PPEGA was allowed to be highly swollen in water but the CPB of PHEA did not. This means that water is reasonably good for PPEGA but not for PHEA. The AFM microtribological study between swollen brushes revealed two lubrication regimes, namely, boundary‐ and hydrodynamic‐lubrication regimes, with different shear‐velocity dependencies. Reflecting insufficient quality of water as a solvent, the CPB of PHEA showed adhesive interaction and thereby a higher frictional coefficient μ in the boundary lubrication. More interestingly, super lubrication was achieved for the CPB of PPEGA with a μ value in the order of 10?4 in water and in 0.1 M aqueous NaCl solution (without the help of electrostatic repulsion). Super lubrication was concluded to be a characteristic feature of the CPB, even in an aqueous system. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Recently, applications of hyaluronic acid (HA) as a biomaterial were investigated. However, the weak structure of HA gel and the effects of using cross‐linker raised concerns during in vivo resolution. In this study, we investigated the method to solve these two problems using physical cross‐linking and compositing with poly(vinyl alcohol) (PVA). Various weight ratios of HA and PVA solutions were mixed, adjustment of pH to 1.8 using HCl then used to fabricate HA‐PVA cryo‐gel by freezing‐thawing. Young's modulus of the prepared gel rose with the increase of both HA and PVA concentrations or either one of them. We estimated that HA and PVA have exhibited these mechanical properties due to forming a double network. HA‐PVA gel showed kinetic friction force of approximately 10 times of PVA gel, while water contact angle and protein adsorption of HA‐PVA gels were remarkably decreased. The properties of the prepared gel suggest that it can be used for postoperative adhesion prevention applications.  相似文献   

6.
Electrostatic interactions within a semi‐interpenetrating network (semi‐IPN) gel can control the postsynthesis loading, long‐term retention, and subsequent release of small‐molecule cationic antibiotics. Here, electrostatic charge is introduced into an otherwise neutral gel [poly(ethylene glycol) (PEG)] by physically entrapping high‐molecular‐weight poly(acrylic acid) (PAA). The network structure is characterized by small‐angle neutron scattering. PEG/PAA semi‐IPN gels absorb over 40 times more antibiotic than PAA‐free PEG gels. Subsequent soaking in physiological buffer (pH 7.4; 0.15 M NaCl) releases the loaded antibiotics for periods as long as 30 days. The loaded gels elute antibiotics with diffusivities of 4.46 × 10?8 cm2/s (amikacin) and 2.08 × 10?8 cm2/s (colistin), which are two orders of magnitude less than those in pure PEG gels where diffusion is controlled purely by gel tortuosity. The release and hindered diffusion can be understood based on the partial shielding of the charged groups within the loaded gel, and they have a significant effect on the antimicrobial properties of these gels. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 64–72  相似文献   

7.
Raman spectroscopy has been used to investigate the structure of gel-surfactant complexes. Cross-linked sodium poly(acrylate) and sodium poly(styrene sulfonate) were immersed in solutions of the cationic surfactant dodecyl trimethylammonium bromide. During the deswelling process, two distinct regions could be observed for both types of gels. Looking at the Raman spectra, however, for the poly(styrene sulfonate), the surfactant could be found throughout the gel particle, whereas for poly(acrylate), essentially all the surfactant was bound in a surface layer.  相似文献   

8.
The cylindrical poly(sodium acrylate) gel (SA gel) was synthesized in the glass capillary using aluminum ions as the crosslinker. The swelling ratio of the gel was measured after the repeated exchange of solvent (distilled deionized water, about pH 5.8). The gel exhibited two relaxation processes; at first the gel swells rapidly as exchange of water (the swelling process), then shrinks very slowly (the shrinking process). In order to reveal the microscopic structural change (especially, the formation of hydrogen bonding) by water exchange, attenuated total refraction (ATR) Fourier transform infrared (FT-IR) spectroscopy was applied to the gels with different swelling ratio. The IR absorption peaks of the gel were assigned based on those of poly(sodium acrylate) aqueous solutions at different pH. On the swelling process, the carboxyl groups were gradually protonated, and the intermolecular hydrogen bonding started to form in the gel with maximum swelling ratio. On the shrinking process, the formation of hydrogen bonding gradually increased with long-time repeated water exchange which resulted in the shrinkage of the gel. Effects of the repeated water exchange on the swelling behavior were discussed in terms of the exchange of counter ions and the formation of hydrogen bonding.  相似文献   

9.
Poly(acrylic acid)(PAA) gel network with only chemical crosslinking and hydorophobically modified PAA(HM-PAA)gels with both chemical and physical crosslinking were synthesized by radical polymerization in tert-butanol,using ethylene glycol dimethacrylate (EGDMA) as crossliker,and 2-(N-ethylperfluorooctanesulfoamido)ethyl methacrylate (FMA),stearyl acrylate (SA) or lauryl acrylate (LA) as Hydrophobic comonomer respectively.The effcet of the fractions and the species of the hydrophobes on swelling properties of HM-PAA gels and the interaction of gels and surfactants were studied.The results showed that the swelling ratio of HM-PAA gels exhibited a sharp decrease with increasing hydrophobic comomomer comcentration,Which Could be sacribed to the formation of strong hydrophobic association among hydrophobic groups.It was proved that two kinds of binding mechanisms of surfactan/gel and different kinds of hydrophobic clusters existed in gels containing both physical and chemical networks.  相似文献   

10.
Macroporous poly(methyl methacrylate) networks with varying cross-linking density and porosity were coated with plasma-polymerised poly(2-hydroxyethyl acrylate) grafted on the pores surface. The result is a mechanically reinforced hydrogel (PMMA-gr-plPHEA) whose properties are characterised in this work using several experimental techniques. Bulk PMMA and bulk PHEA were also characterised as reference materials. The diffusion and water sorption properties of these hydrogels were studied through equilibrium water sorption isotherms and desorption starting with the sample equilibrated in immersion in liquid water or in a vapour atmosphere. Glass transition, dynamic-mechanical relaxation and thermal degradation were characterised in order to study the interphase interaction in these biphasic systems. All these experimental techniques suggested that plasma-polymerised PHEA is more homogeneously interpenetrated with highly cross-linked macroporous PMMA than if the porous substrate is a loosely cross-linked polymer network.  相似文献   

11.
Gel formations of water-soluble cationic ornithine polypeptides were examined using organic aliphatic crosslinking agents such as dialdehydes and diketones in water systems. When 1/20-5 equivalent molar amounts of organic crosslinking agents were added to the ornithine polypeptide systems, the corresponding gels were formed. Among the organic crosslinking agents used, glutaraldehyde was the most effective for the gel formation. As a whole, the molecular weight of the samples, the amino acid compositions, the crosslinking agents used, the molar ratios between crosslinking agents and functional residues, and system pH levels were found to play roles in the gel formation. The gels formed were characterized by swelling properties and by the selective adsorption ability of some amino acids. The polyornithine gels exhibited reversible, but hysteretic swelling in a water-acetone mixed solvent. Due to the cationic δ-amino moieties which remain unreacted, the acidic amino acid, aspartic acid, was adsorbed into the gels' matrix, exhibiting the predominant adsorption. Biodegradable characteristics of the copoly (ornithine tyrosine) [copoly (Orn Tyr)] gels by chymotrypsin were also investigated.  相似文献   

12.
以丙烯酸(AA)、甲基丙烯酸十八酯(OMA)、十二烷基硫酸钠(SDS)为原料,采用胶束共聚的方法合成了疏水缔合(HA)凝胶.在HA凝胶内部,表面活性剂SDS与疏水单体OMA组成的增溶胶束起到物理交联作用,将亲水的聚合物链交联起来.通过单向拉伸试验证实了该凝胶具有较高的机械性能.此外,也测试了HA凝胶在不同pH值溶液中的溶胀行为.结果显示,HA凝胶具有特殊的溶胀行为,其溶胀过程可以分为凝胶溶蚀、溶胀平衡和凝胶瓦解3个阶段.在强酸性条件下,凝胶的溶胀被抑制,没有出现凝胶瓦解阶段.在强碱性条件下,凝胶的溶胀被促进,溶胀平衡阶段被越过.盐的存在也会抑制HA凝胶的溶胀,但在SDS溶液中,溶液中的SDS会促使凝胶中的疏水改性聚合物溶解到溶液中去,组成新的缔合结构,而使溶液增稠。  相似文献   

13.
The objective of this study is to provide a rheological characterization of binary hydroalcoholic gels made with Carbopol Ultrez 10 (U10) and Hyaluronic Acid (HA) as a function of polymer concentration: U10 (0.0-2.0% w/w) and HA (0.00-0.20% w/w), and to determine the influence of this combination on the thixotropic properties of the resulting binary systems. Interaction of the two polymers was measured using the Viscose Synergy Index (I(S)) and thixotropic analysis, which indicate the structural changes that take place in binary gels attributable to molecular interactions between the gelling agents. The maximum values for viscose synergy (I(S)=1.22-1.44) are obtained for the U10 : HA mixtures with a polymer proportion of 10 : 1. The behavior of the binary gels studied is the result of the formation of a more structured three-dimensional network between the U10 and HA molecules. Shearing of this polymer network requires application of a greater force than is needed to shear the structure of the separate gels. Inclusion of HA in a proportion of 1 : 10 has a fixing effect on the polymer network, resulting in greater resistance to shearing in the compound gel. The relative thixotropic area -A(R)- shows maximum values (A(R)=17.215%) for the same polymer composition. The evolution of the two parameters indicates that restructuring of the molecular interactions for this polymer proportion (10 : 1) takes place; the result is a reinforced three-dimensional structure in the gelled system, which increases the thixotropic properties. The same composition leads to a maximum of thixotropic properties as well as viscose synergy because both characteristics are closely related to structural changes observed in the binary systems of this composition. Thixotropic systems have a very wide area of application in the pharmaceutical industry. For this reason, the results obtained here considerably increase the use of the gels studied. In fact, incorporation of HA significantly improves a property of acrylic gels which has direct repercussions on the ease and efficiency of their application to the skin.  相似文献   

14.
Two series of amphiphilic hydrogels of various compositions were prepared by sequentially interpenetrating two polymer networks, a poly(2-hydroxyethyl acrylate) (PHEA) network inside either a macroporous matrix of poly(methyl methacrylate) (PMMA) or a macroporous poly(ethyl acrylate) (PEA) network. In both cases poly(2-hydroxyethyl acrylate) (PHEA) served as network II, and the firstly formed porous network was a hydrophobic homonetwork, PMMA or PEA, that conferred mechanical strength to the hydrogel. In order to obtain hydrogels with high hydrophilic content, the first network was prepared in the presence of a solvent, thus yielding a macroporous network. The two families of IPNs thus obtained were: (net-PMMA)-ipn-(net-PHEA) and (net-PEA)-ipn-(net-PHEA), with a PHEA content ranging from 36% to 87% and from 64% to 94%, respectively. The novelty of the work consisted in comparing the effect of using as the first macroporous network a polymer which is glassy at room temperature (PMMA) and another of the same family (PEA) but which is in the rubber state at room temperature. Swelling studies showed that the specific equilibrium water content of PHEA falls from 1.6 for pure (unconfined) PHEA to values that range from 0.4 to 1, for the (net-PMMA)-ipn-(net-PHEA), whereas in the second IPNs family, the equilibrium water uptake of PHEA phase is, at least, the same as that of the pure PHEA (in some cases it is greater). This means that the expansion of the PHEA phase is not restricted by the confining hydrophobic component when this last is in the rubber state at room temperature. Whereas for the first IPNs the mechanical properties significantly increased (storage modulus at 37 °C from 0.25 to 2.5 GPa) compared with those of pure PHEA (25.12 MPa), little if any reinforcing effect was observed in the second type of IPNs. This is due to the fact that the glass transition of the PEA network takes place at a lower temperature than that of PHEA, so both components are in the rubbery state at room temperature. Both series behave differently also in dynamic water sorption experiments: the rigid PMMA network hinders the diffusion of water, yielding lower values of the apparent diffusion coefficients. By contrast, with the PEA polymer as network I this diffusion is similar to that of the pure PHEA homonetwork.  相似文献   

15.
The regularities of adsorption of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride), on the surface of fused quartz are studied at different values of solution pH by capillary electrokinetics. It is shown that the polyelectrolyte adsorption on a negatively charged surface depends on the value of the surface charge and increases with its growth. At a low charge value (pH 3.8), the polyelectrolyte adsorption increases the quartz surface charge. The driving forces of the adsorption are both electrostatic interaction and forces of nonelectrostatic nature, probably hydrophobic interactions and a change in entropy due to the displacement of counterions from a double layer. The adsorption of poly(diallyldimethylammonium chloride) on quartz from alkaline and neutral solutions is irreversible, which indicates the key role of the electrostatic interaction. At low values of the surface charge, the nonelectrostatic interactions play the main role, thereby resulting in polyelectrolyte desorption.  相似文献   

16.
A novel cationic surfactant-based gelling system is presented in this report. The cationic surfactant 1-dodecylpyridinium bromide (DPB) in the mixture of acetone and water can form gels without additive. The gel structure and the gelation mechanism were studied using techniques of rheology, microscopy, FT-IR and 1H NMR spectroscopy. The present results indicate that the DPBs in acetone/water driven by hydrogen bonding, van der Waals force and other non-covalent interactions can self-assemble into rod-like fibers, and the fibers intertwined into a three-dimensional network. Laccase and horseradish peroxidase entrapped in the gel are biologically and/or electrochemically active. In addition, the present gel does not swell in the hydrophobic ionic liquid [Bmim]PF6, showing its great promise in green biocatalysis and biotransformation.  相似文献   

17.
A J Edgar 《Electrophoresis》1989,10(10):722-725
Electrophoresis of monomeric actin (G-actin) on 8-25% acrylamide Pharmacia PhastGels was carried out using gels and agarose buffer strips preequilibrated in buffer containing adenosine triphosphate (ATP), calcium ions (Ca2+) and dithiothreitol. On these gels G-actin ran as a sharp band at an apparent molecular mass of 45 kDa relative to standard proteins which is slightly greater than its actual molecular mass of 42 kDa. Electrophoresis in the absence of these solutes led to denaturation and aggregation of the protein, as reflected by a long streak. Filamentous actin (F-actin) did not enter the gel. The actin monomer-binding protein, deoxyribonuclease I, (DNase I) forms a binary complex with G-actin. The purity and apparent molecular mass 74 kDa of this complex were determined by native gel electrophoresis. By the simple procedure of preequilibrating both gel and buffer strips with appropriate ligands, this technique could be extended to investigate interactions between actin and other G-actin-binding proteins and other proteins whose stability is ligand dependent.  相似文献   

18.
The migration behavior of cationic solutes and influences of the interactions of cationic solutes with sodium dodecyl sulfate (SDS) on the formation of micelles and its critical micelle concentration (CMC) were investigated by capillary electrophoresis at neutral pH. Catecholamines and structurally related compounds, including epinephrine, norepinephrine, dopamine, norephedrine, and tyramine, which involve different extents of hydrophobic, ionic and hydrogen-bonding interactions with SDS surfactant, are selected as cationic solutes. The dependence of the effective electrophoretic mobility of cationic solutes on the concentration of surfactant monomers in the premicellar region provides direct evidence of the formation of ion-pairs between cationic solutes and anionic dodecyl sulfate monomers. Three different approaches, based on the variations of either the effective electrophoretic mobility or the retention factor as a function of surfactant concentration in the premicellar and micellar regions, and the linear relationship between the retention factor and the product of a distribution coefficient and the phase ratio, were considered to determine the CMC value of SDS micelles. The suitability of the methods used for the determination of the CMC of SDS with these cationic solutes was discussed. Depending on the structures of cationic solutes and electrophoretic conditions, the CMC value of SDS determined varies in a wide concentration range. The results indicate that, in addition to hydrophobic interaction, both ionic and hydrogen-bonding interactions have pronounced effects on the formation of SDS micelles. Ionic interaction between cationic solutes and SDS surfactant stabilizes the SDS micelles, whereas hydrogen-bonding interactions weakens the solubilization of the attractive ionic interaction. The elevation of the CMC of SDS depends heavily on hydrogen-bonding interactions between cationic solutes and SDS surfactant. Thus, the CMC value of SDS is remarkably elevated with catecholamines, such as epinephrine and norepinephrine, as compared with norephedrine. In addition, the effect of methanol content in the sample solution of these cationic solutes on the CMC of SDS was also examined.  相似文献   

19.
Bis(LeuOH) (1a), bis-(ValOH) (2a) and bis(PhgOH) (5a) (Phg denotes (R)-phenylglycine) oxalyl amides are efficient low molecular weight organic gelators of various organic solvents and their mixtures as well as water, water/DMSO, and water/DMF mixtures. The organisational motifs in aqueous gels are dominated primarily by lipophilic interactions while those in organic solvents are formed by intermolecular hydrogen bonding. Most of the gels are thermoreversible and stable for many months. However, 2a forms unstable gels with organic solvents which upon ageing transform into variety of crystalline shapes. For some 1a/alcohol gels, a linear correlation between alcohol dielectric constants (epsilon) and gel melting temperatures (Tg) was found. The 1H NMR and FTIR spectroscopic investigations of selected gels reveal the existence of temperature dependent network assembly/dissolution equilibrium. In the 1H NMR spectra of gels only the molecules dissolved in entrapped solvent could be observed. By using an internal standard, the concentration of dissolved gelator molecules could be determined. In FTIR spectra, the bands corresponding to network assembled and dissolved gelator molecules are simultaneously present. This enabled determination of the Kgel values by using both methods. From the plots of InKgel versus 1/T, the deltaHgel values of selected gels have been determined (-deltaHgel in 10-36 kJ mol(-1) range) and found to be strongly solvent dependent. The deltaHgel values determined by 1H NMR and FTIR spectroscopy are in excellent agreement. Crystal structures of 2a and rac-5a show the presence of organisational motifs and intermolecular interactions in agreement with those in gel fibres elucidated by spectroscopic methods.  相似文献   

20.
Water sorption in hydrogels based on nanocomposites of poly(2‐hydroxyethyl acrylate) (PHEA) and silica, prepared by simultaneous polymerization and sol‐gel process, were studied gravimetrically over wide ranges of silica content, both below and above the percolation threshold of about 15% wt for the formation of a continuous inorganic network interpenetrated with the organic network. Measurements were performed at room temperature from the vapor phase, both at equilibrium and dynamic, for selected values of water activity αw between 0 and 0.95, and from the liquid phase. In the nanocomposite hydrogels, the overall water uptake from the vapor phase is practically the same as in pure PHEA below the percolation threshold, whereas it is reduced above the percolation threshold, in particular at high αw values where swelling becomes significant. Water clustering sets in at around 14 vol % (10 wt %) of water independently of composition, whereas the mean value of water molecules in a cluster decreases at high silica contents. In immersion experiments water uptake decreases as silica content increases to the percolation threshold of about 15 wt % and is then almost independent of composition. A scheme is proposed, which explains these results in terms of the existence of micelles, where a number of hydrophilic hydroxy groups are linked together, and their disentaglement by immersion into water. Diffusion coefficients of water depend on water content and are reduced on addition of silica above the percolation threshold. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号