首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures, infrared spectra, and electronic properties of the N7,N9-dimethylguaninium chloride have been studied. The interaction of one cation with one to four Cl anions and one Cl anion with two cations were investigated. Fifteen stable conformers are obtained. It is found that there are four acidic regions in the vicinity of the guaninium cations. In these regions, the cation could H-bond with one to three Cl anions but no more than three nearest anions. One Cl anion could H-bond with two cations. Additionally, evidence of a Cl...pi interaction between the anion and cation is observed. Among these structures, one cation interaction with two anions and two cations interaction with one anion have the larger interaction energies than the other series. Natural bond orbital analyses and molecular orbitals reveal that the charge transfer from anion(s) to the cation(s) occurs mainly through either the Cllp --> sigma C-H, Cllp --> sigma N-H, or Cllp --> pi C8-N7 interactions. The interaction between Cl and sigma (C/N-H) or pi C-N produces a small bond order. This indicates that the Cl...H (Cl...pi) interaction exhibits a weak covalent character and suggests a strong ionic H-bond (Cl...pi bond). What's more, formation of Cl...H/Cl...pi bond decreases the bond order of the associated C/N-H bond or C8-N7 bond. In addition, examination of vibrational spectrum of each conformer explains the origin of H-bonding character.  相似文献   

2.
For the first time, a theoretical study has been performed on the prototypical decathio[10]circulene (C(20)S(10)) species, which is an analogue of the novel octathio[8]circulene "Sulflower" molecule (C(16)S(8)). Examinations of the singlet and triplet states of C(20)S(10) were made at the B3LYP/6-311G(d) level. Local minima of C(2) and C(s) symmetry were found for the lowest singlet and triplet states, respectively. The stability of C(20)S(10) was assessed by calculating the ΔH°(f) of C(16)S(8) and C(20)S(10) and the ΔH(o) for their decomposition into C(2)S units. Frontier molecular orbital plots show that structural adjacent steric factors along with the twist and strain orientations of C(20)S(10) do not disturb the aromatic π-delocalizing effects. In fact, C(20)S(10) maintains the same p(z) HOMO character as C(16)S(8). These similarities are further verified by density-of-states characterization. Calculated infrared spectra of C(16)S(8) and C(20)S(10) show broad similarities. Molecular electrostatic potential results reveal that eight of the peripheral sulfur atoms are the most electronegative atoms in the molecule, while the interior ten-membered ring exhibits virtually no electronegativity.  相似文献   

3.
Results of a theoretical study of the effects of including ligands on stoichiometric In(n)P(n) clusters are presented. We apply a parametrized density-functional method and consider clusters with n up to above 70. As ligands we consider H atoms and CH3 groups, and the results are compared with our earlier ones for the naked clusters. We find that the ligands lead to only smaller structural changes but that an enhanced In-to-P electron transfer in the outermost parts of the clusters, which we observed for the naked clusters, is largely suppressed, so that there is a more homogeneous In-to-P transfer throughout the whole cluster. Adding the ligands leads, in most cases, to an increase in the HOMO-LUMO gap and, therefore, also to an increase in the stability of the clusters. However, we find also that the HOMO-LUMO gap depends critically on the type, sites, and number of ligands that are added.  相似文献   

4.
5.
The structure, spectroscopic, thermodynamic, and electronic properties of zoledronic acid (ZL, 1-hydroxy- 2-(1H-imidazol-1-yl)ethane-1,1-diyldiphosphonic acid), typical third-generation nitrogen-containing bisphosphonates (N-BPs), have been investigated systematically. Six conformations are taken into account, including three unprotonated and three protonated structures. They are optimized by four different density functional theory (DFT) methods combined with four different basis sets to evaluate their performance in predicting the structural and spectral features of ZL. Thermodynamic properties are calculated based on the harmonic vibrational analysis, including the standard heat capacity (C p,m 0 ), entropy (S m 0 ), and enthalpy (S m 0 ). The 1H and 13C NMR chemical shifts are calculated using the GIAO method and compared with the experimental data. Molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analyses are also performed to study the electronic characteristics of the title compound.  相似文献   

6.
On the basis of density-functional theory (DFT) calculations, a theoretical analysis of the exchange interactions in Ni9L2(O2CMe)8{(2-py)2CO2}4, was performed, where L is a bridging ligand, OH- (1) or N3- (2). Each magnetic interaction between the Ni spin centers is analyzed for 1 and 2 in terms of exchange integrals (J values), orbital overlap integrals (T values) and natural orbitals. It was found that a J3 interaction, which is a magnetic interaction via the bridging ligand orbitals, mainly controls the whole magnetic properties, and the dominant interaction is a sigma-type orbital interaction between Ni dz2 orbitals. Further investigations on the magnetostructural correlations are performed on the J3 interactions using simplest Ni-L-Ni models. These models reproduced the magnetic interactions qualitatively well not only for the Ni9 complexes but also for other inorganic complexes. Strong correlations have been found between the magnetic orbital overlaps (T values) and the Ni-L-Ni angle. These results revealed that the difference of the magnetic properties between OH- and N3- is caused by the orbital overlap integral (T values) of the sigma-type J3 interaction pathway. The magnetic interactions are also discussed from a Hubbard model by evaluating the transfer integral (t) and on-site Coulomb integrals (U), in relation to the Heisenberg picture.  相似文献   

7.
The structural and electronic properties of nine derivatives of the N3 complex (cis-[Ru(4,4'-COOH-2,2'-bpy)2(NCS)2]) have been studied, using density functional theory (DFT) at a hybrid (PBE0) level, with the aim of finding a systematic way to improve their spectral absorption in the visible region for photoelectrochemical applications. To this end, by means of time dependent-DFT (TD-DFT) calculations, excited states were investigated in solution to simulate UV-vis spectra. Several effects have been taken into account: the effect of the presence and deprotonation of the carboxylic groups as well as the variation of the chalcogen within the NCX ligand (X=S, Se, or Te). Besides the excellent agreement between theoretical and available experimental data, with regards to potential future experimental applications of the investigated complexes, from the calculations, the cis-Ru(dcbpyH2)(NCSe)2 may appear as a good candidate to enhance the response of the N3 dye to light, even if only slightly.  相似文献   

8.
We present theoretical results of size dependent structural, electronic, and optical properties of ligand‐free stoichiometric AlnAsn clusters of zinc‐blende modification. The investigation is done using a simplified parametrized linear combination of atomic orbital–density functional theory‐local density approximation–tight‐binding (LCAO–DFT–LDA–TB) method and consider clusters with n up to around 100. Initial structures have assumed as spherical parts of infinite zinc‐blende structure and then allowed to relax to the closest local‐energy‐minimum structure. We analyze the radial distributions of atoms, Mulliken populations, electronic energy levels (in particular, HOMO and LUMO), bandgap, and stability as a function of size and composition. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

9.
We have previously reported the unique luminescence properties of ML4 complexes formed between tropolonate ligands and a series of lanthanide cations, several of them emitting in the near-infrared domain. The synthesis and composition of ML4 lanthanide tropolonate complexes have been previously described in the literature, but no structural information has been available so far. In this work, the crystal structures of several lanthanide tropolonate complexes (Ln3+ = Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+) have been isolated and systematically analyzed by X-ray diffraction and compared by using different criteria including the Kepert formalism. Such comparative work is rare in lanthanide coordination chemistry. The analysis of the structures in the solid state reveals that although the packing of the ML4 complexes depends on the nature of the metal ion, the coordination geometries around the different lanthanides is virtually similar for all the cations that have been analyzed; an indication that lanthanide-centered f orbitals play a role in controlling this coordination geometry. Analysis of the solution's behavior by stability constant determination reveals the formation of complexes with similar ML4 stoichiometries as those observed in the solid state. Nevertheless, analysis of the luminescence lifetimes indicates that the coordination environment around the lanthanide cations are different in the solid state and in solution, with the presence of one molecule of water bound to the lanthanide cation in solution. The presence of such a water molecule is a significant source of nonradiative deactivation of the excited states of the lanthanide cations, an unfavorable condition that leads to significant loss in fluorescence intensity of these lanthanide complexes. This exemplifies that such comparative analysis between the solid state and solution is important for the rationalization of the luminescence properties of the complexes. This analysis will aid us in optimizing ligand design for improved photophysical properties of the complex.  相似文献   

10.
用ZINDO、从头算和密度泛函理论方法研究荧光素及其衍生物的电子结构和光谱性质.计算结果表明母体双阴离子荧光素分子(1)与单(2)、双(3)取代形成的单阴离子荧光素分子的基态电子结构不同,而且1与2和3的基态和激发态的电子转移方向相反.体系1~3的最大吸收波长依次发生红移,与实验结果相符合.  相似文献   

11.
A method for analyzing the A(1u)/A(2u) contents of metalloporphyrin pi-cation radicals is developed and applied to a series of unsubstituted planar metalloporphines (MPs) (M=Cr, Mn, Fe, Co, Ni, Cu, and Zn). The structures and electronic properties of the MPs and their cation radicals were calculated by density functional theory (DFT) and subsequently analyzed. It was found that the MPs with small core sizes have a tendency to form A(1u)-type radicals, while the MPs with large core size have a preference for an A(2u)-type. Neither of these pure-state species, however, is stable under the D(4)(h) symmetry, and both radical cation types are subject to pseudo-Jahn-Teller (pJT) distortion. The pJT distortion leads to structures with lower symmetry and states that have mixed character with respect to the A(1u) and A(2u) components. The degree of mixing could be estimated by employing orbital projection technique or a complementary spin density decomposition. Both techniques produce very similar results, pointing out that the frontier orbital, which becomes empty upon electron removal, plays a critical role in determining electronic properties.  相似文献   

12.
The results of theoretical analysis of the electronic and crystal structural properties and bonding in relation to thermal decomposition process in anhydrous calcium oxalate are presented. The methods used in this analysis—topological analysis of electron density (Bader’s Quantum Theory of Atoms in Molecules approach) obtained from DFT calculations performed by Wien2k package (Full Potential Linearized Augmented Plane Wave Method); bond order model (Cioslowski&Mixon), applied to topological properties of the electron density; as well as Brown’s Bond Valence Model (bonds valences and strength’, and bond and crystal strains, calculated from crystal structure and bonds lengths data) are described. The analysis of the obtained results shows that these methods allow us to explain the way of thermal decomposition process of anhydrous calcium oxalate to calcium carbonate as a decomposition product, and to describe the structural transition taking place during such process (from monoclinic anhydrous CaC2O4 to rhombohedral calcite structure). In the light of the results of our similar calculations performed previously for other anhydrous oxalates (zinc, cadmium silver, cobalt, and mercury) the proposed theoretical approach can be considered as promising and reliable tool, which allow analyzing the properties of the structure and bonding and hence predicting the most probable way of thermal decomposition process for given crystal structure.  相似文献   

13.
By monitoring the decay of SO4*- after flash photolysis of aqueous solutions of S2O82- at different pH values, the kinetics of the reaction of SO4*- radicals with gallic acid and the gallate ion was investigated. The bimolecular rate constants for the reactions of the sulfate radicals with gallic acid and the gallate ion were found to be (6.3 +/- 0.7) x 10(8) and (2.9 +/- 0.2) x 10(9) M(-1) s(-1), respectively. On the basis of the oxygen-independent second-order decay kinetics and on their absorption spectra, the organic radicals formed as intermediates of these reactions were assigned to the corresponding phenoxyl radicals. DFT calculations in the gas phase and aqueous solution support formation of the phenoxyl radicals by H abstraction from the phenols to the sulfate radical anion. The observed recombination of the phenoxyl radicals of gallic acid to yield substituted biphenyls and quinones is also supported by the calculations. HPLC/MS product analysis showed formation of one of the predicted quinones.  相似文献   

14.
The structural, energetic, and electronic properties of stoichiometric and defective Li(2)O were studied theoretically. The reliability of the Perdew-Wang method in the framework of density functional theory (DFT), and of two DFT/Hartree-Fock hybrid methods (PW1PW and B3LYP), was examined by comparison of calculated and available experimental data. Atom-centered orbitals and plane waves were used as basis functions for the crystalline orbitals. For both cases, the basis set dependence of calculated properties was investigated. With most of the methods, good agreement with the experimental Li(2)O lattice parameter and cohesive energy was obtained. In accordance with experiment, the analysis of electronic properties shows that Li(2)O is a wide gap insulator. Among the considered methods, the hybrid methods PW1PW and B3LYP give the best agreement with experiment for the band gap. The formation of an isolated cation vacancy defect and an F center in Li(2)O were studied. The effect of local relaxation on the calculated defect formation energies and the defect-induced changes of electronic properties were investigated and compared to available experimental results. The migration of a Li(+) ion in Li(2)O bulk was investigated. The activation energy for the migration of a Li(+) ion from its regular tetrahedral site to an adjacent cation vacancy was calculated, including the effect of local relaxation. The calculated activation barriers, 0.27-0.33 eV, are in excellent agreement with experiment.  相似文献   

15.
The reaction of thallium ethoxide with [H(OEt2)2][H2N{B(C6F5)3}2] in diethyl ether afforded [Tl(OEt2)3][H2N{B(C6F5)3}2] (2a), [Tl(OEt2)4][H2N{B(C6F5)3}2] (2b), or [Tl(OEt2)2][H2N{B(C6F5)3}2].CH2Cl2 (2c), depending on the reaction conditions. The dication in the hydrolysis product [Tl4(mu3-OH)2][H2N{B(C6F5)3}2]2.4CH2Cl2 consists of two bridging and two terminal Tl+ ions bound to triply bridging hydroxides. Heating Et2O complexes in toluene afforded [Tl(eta6-toluene)n][H2N{B(C6F5)3}2] (4, n = 2, 3), while C6Me6 addition gave the first thallium-C6Me6 adduct, [Tl(eta6-C6Me6)2][H2N{B(C6F5)3}2].1.5CH2Cl2 (5a), a bent sandwich complex with very short Tl...centroid distances. These arene complexes show no close contacts between cations and anions. Displacement of toluene ligands by ferrocene gave [Tl2(FeCp2)3][H2N{B(C6F5)3}2]2.5CH2Cl2 (6) which contains the multidecker cations [Tl(FeCp2)]+ and [Tl(FeCp2)2]+ in a 1:1 ratio. By contrast, decamethylferrocene leads to electron transfer; the isolable thallium-ferrocene complexes may therefore be viewed as precursor complexes for this redox step. With 18-crown-6 the complexes [Tl(18-crown-6)2][H2N{B(C6F5)3}2] (11a) and [Tl(18-crown-6)][H2N{B(C6F5)3}2].2CH2Cl2 (11b) were isolated. The structure of the latter shows an eight-coordinate thallium ion, where the coordination to the six oxygen donors in equatorial positions is completed by axial contacts to two F atoms of the counter anions. The bonding between thallium(I) and arenes was explored by density-functional theory (DFT) calculations. The optimized geometry of [Tl(tol)3]+ converged to a structure very similar to that obtained experimentally. Calculations on [Tl(C6Me6)2]+ (5b) to establish whether a linear or bent geometry is the most stable revealed a very flat potential-energy surface for distortions of the Ctr(3)-Tl-Ctr(4) angle. Overall, there is very little energetic preference for one particular geometry over another above about 140 degrees , in good agreement with the crystallographic geometry. The calculated Tl-arene interaction energies increase from 73.7 kJ mol-1 for toluene to 121.7 kJ mol-1 for C6Me6.  相似文献   

16.
We present the results of the ab initio theoretical study of the electronic properties, and first and second harmonic generation for CdX compounds with zinc-blende structure performed using the full potential linearized augmented plane wave method. Our calculations show that these compounds have similar structures. The valence band maximum and the conduction band minimum are located at Gamma, resulting in a direct energy gap. The energy gap of these compounds decreases when S is replaced by Se and Se by Te, in agreement with the experimental data and previous theoretical work. This can be attributed to the increase in the bandwidth of the conduction bands. The optical spectra are analyzed and the origin of some of the peaks in the spectra is discussed in terms of the calculated electronic structure. Our calculations for the linear optical properties show excellent agreement with the available experimental data.  相似文献   

17.
Density functional theory energies, geometries, and population analyses as well as nucleus-independent chemical shifts (NICS) have been used to investigate the structural and magnetic evidence for cyclic CnSn(2-) and CnSn (n = 3-6) electron delocalization. Localized molecular orbital contributions to NICS, computed by the individual gauge for localized orbitals method, dissect pi effects from the sigma single bonds and lone pair influences. CnSn(2-) (n = 3-5) structures in Dnh symmetry are minima. Their aromaticity decreases with increasing ring size. C3S3(2-) is both sigma and pi aromatic, while C4S4(2-) and C5S5(2-) are much less aromatic. NICS(0)pi, the C-C(pi) contribution to NICS(0) (i.e., at the ring center), decreases gradually with ring size. In contrast, cyclic C6S6(2-) prefers D2h symmetry due to the balance between aromaticity, strain energy, and the S-S bond energies and is as aromatic as benzene. The theoretical prediction that C6S6(6-) has D6h minima was confirmed by X-ray structure analysis. Comparisons between thiocarbons and oxocarbons based on dissected NICS analysis show that CnSn(2-) (n = 3-5) and C6S6(6-) are less aromatic in Dnh symmetry than their oxocarbon analogues.  相似文献   

18.
The addition of 2 equiv of N,N',N' '-triisopropylguanidine (guanH(2)) to Zr(CH(2)Ph)(4) produced the bis(guanidinato)bis(benzyl)zirconium complex [((i)PrNH)C(N(i)Pr)(2)](2)Zr(CH(2)Ph)(2) (1). The mono(guanidinato) complex [((i)PrN)(2)C(NH(i)Pr)]ZrCl(3) (2) was accessible by the reaction of 2 equiv of guanH(2) with ZrCl(4). Guanidinium hydrochloride, [C(NH(i)Pr)(3)]Cl, is a byproduct of this reaction. When crystallized from THF, complex 2 was isolated as the THF adduct [((i)PrNH)C(N(i)Pr)(2)]ZrCl(3)(THF) (2-THF). The mixed cyclopentadienyl guanidinato complex [eta(5)-1,3-(Me(3)Si)(2)C(5)H(3)][((i)PrNH)C(N(i)Pr)(2)]ZrCl(2) (3) was prepared by treatment of [1,3-(Me(3)Si)(2)C(5)H(3)]ZrCl(3) with the in situ generated lithium triisopropylguanidinate salt. The reaction of guanH(2) with [1,3-(Me(3)Si)(2)C(5)H(3)]ZrMe(3) affords the dimethyl derivative [eta(5)-1,3-(Me(3)Si)(2)C(5)H(3)][((i)PrNH)C(N(i)Pr)(2)]ZrMe(2) (4). Definitive evidence for the molecular structures of these products is provided through single-crystal X-ray characterization of 1, 2-THF, and 3, which are presented. The extent of pi delocalization within the guanidinato ligand is discussed in the context of the metrical parameters obtained from these structural studies.  相似文献   

19.
A series of dimeric complexes formed between bromocarbon molecules and two anions (Br? and CN?) have been investigated by using MP2 method. The quantum theory of atoms in molecules (QTAIM) and the second‐order perturbation natural bond orbital (NBO) approaches were applied to analyze the electron density distributions of these complexes and to explore the nature of charge‐assisted halogen bonding interactions. As anticipated, these interactions are significantly stronger relative to the corresponding neutral ones. The results derived from ab initio calculations described herein reveal a major contribution from the electrostatic interaction on the stability of the systems considered. Beside the electrostatic interaction, the charge‐transfer force and the second‐order orbital interaction also play an important role in the formation of the complexes, as a NBO analysis suggested. The presence of halogen bonds in the complexes has been identified in terms of the QTAIM methodology, and several linear relationships have been established to provide more insight into charge‐assisted halogen bonding interactions. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

20.
Eight systems formed by adding two gold atoms to a pentacene (Au2C22H14) were investigated by density functional theory. The structures, electronic spectra and second-order nonlinear optical properties of these eight systems were calculated and were compared with AuC22H14. The covalent bonds were observed in these eight systems (Au2C22H14) studied, and the Au–C bond can be strengthened by increasing the number of Au atoms. Moreover, introduction of the second Au atoms further increases the possible transitions and obvious red shift, except for system 4. This indicates that the properties of electronic transition can be tuned through changing the number of Au atoms. Systems 1, 1′, 2 and 2′ possess moderate molecular second-order polarizabilities, and βvec of System 1 is about six times larger than that of (AuC22H14). Thus, the position of Au atoms has also great influence on the second-order NLO response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号