首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intermolecular potential energy surface of He-LiH complex was studied using the full-electronic complete forth-order Miller-Plesset perturbation (MPPT) method.In ab initio calculations,the bond length of LiH was fixed at 0 159 5 nm.The potential has two local minima of Vm=-179.93 cm for the linear He LiH geormetrv at Rm=0.227 nm and Vm=-10.44 cm-1 for the linear He-HL1 geometry at Rm=0.516 nm The potemal exhibits strong anisotropy The analytic potential function with 31 parameters was determined by fitting to the calculated ab,mtio potentials The influence of variation of LiH bond length on the potential energy surface was also studied  相似文献   

2.
A new full-dimensional potential energy surface for the title reaction has been constructed using the modified Shepard interpolation scheme. Energies and derivatives were calculated using the UCCSD(T) method with aug-cc-pVTZ and 6-311++G(3df,2pd) basis sets, respectively. A total number of 30,000 data points were selected from a huge number of molecular configurations sampled by trajectory method. Quantum dynamical calculations showed that the potential energy surface is well converged for the number of data points for collision energy up to 2.5 eV. Total reaction probabilities and integral cross sections were calculated on the present surface, as well as on the ZBB3 and EG-2008 surfaces for the title reaction. Satisfactory agreements were achieved between the present and the ZBB3 potential energy surfaces, indicating we are approaching the final stage to obtain a global potential energy surface of quantitative accuracy for this benchmark polyatomic system. Our calculations also showed that the EG-2008 surface is less accurate than the present and ZBB3 surfaces, particularly in high energy region.  相似文献   

3.
《Chemical physics》1987,114(2):241-249
The three-dimensional potential energy surface for the reaction of Ca and HF has been obtained from a two-configuration direct minimization method using an extended GTO basis set. Features of the surface were examined by fitting calculated values using cubic splines. The height of the barrier to reaction was found to be quite insensitive to the direction of the impinging Ca atom for a wide range of angles of approach. The transition state occurs in the exit channel at an angle of approach of 77°, 33.6 kcal/mole (or 14.8 kcal/mole if the correlation energy error is considered) above the reactants asymptote. A further analysis of the basis set superposition error and the correlation energy error is presented, these results modify the dynamical properties of the system and give a criterion to test the validity of the previously reported two-configuration PES for BeFH and MgFH systems.  相似文献   

4.
A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A')→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.  相似文献   

5.
A global potential energy surface (PES) for the electronic ground state of the BrH(2) system was constructed based on the multireference configuration interaction (MRCI) method including the Davidson's correction using a large basis set. In addition, the spin-orbit correction were computed using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Adding the correction to the ground state potential, the lowest spin-orbit correlated adiabatic potential was obtained. The characters of the new potential are discussed. Accurate initial state specified rate constants for the H + HBr → H(2) + Br abstraction reaction were calculated using a time-dependent wave packet method. The predicted rate constants were found to be in excellent agreement with the available experimental values and much better than those obtained from a previous PES.  相似文献   

6.
Using the multireference configuration interaction method with a Davidson correction and a large orbital basis set (aug-cc-pVQZ), we obtain an energy grid that includes 32 038 points for the construction of a new analytical potential energy surface (APES) for the Ne + H(2)(+) → NeH(+) + H reaction. The APES is represented as a many-body expansion containing 142 parameters, which are fitted from 31?000 ab initio energies using an adaptive nonlinear least-squares algorithm. The geometric characteristics of the reported APES and the one presented here are also compared. On the basis of the APES we obtained, reaction cross sections are computed by means of quasi-classical trajectory (QCT) calculations and compared with the experimental and theoretical data in the literature.  相似文献   

7.
We report full-dimensional, electronically adiabatic potential energy surfaces (PESs) for the ground state (1A(')) and excited state (2A(')) of OH(3). The PESs are permutationally invariant fits to roughly 23,000 electronic energies (MRCI + Q/aVTZ). Classical trajectory calculations of the postquenching dynamics of OH A (2)Σ(+) are carried out on the 1A(') PES for H(2) and D(2), at previously identified conical intersections (CoIs) [B. C. Hoffman and D. R. Yarkony, J. Chem. Phys. 113, 10091 (2000)]. The initial momenta are sampled fully and partially microcanonically, corresponding to "adiabatic" and "diabatic" models of the dynamics, respectively. Branching ratios of reactive to nonreactive channels from separate C(2v), C(∞v), and C(s) symmetries of CoIs are calculated, as are final rovibrational state distributions of OH and H(2) products. The rovibrational distributions of the OH and D(2) products, the D/H-atom translational energy distribution are calculated and compared to experimental ones. Agreement for these observable quantities is good. The branching between reactive and nonreactive quenching is sensitive to the momenta sampling; very good agreement with experiment is obtained using the diabatic sampling but not with the adiabatic sampling. The vibrational state distributions of H(2)O and HOD (although not measured by experiment) are also presented.  相似文献   

8.
By applying the dissociation energy and the equilibrium bond length for a diatomic molecule as explicit parameters, we generate an improved expression for the deformed Rosen–Morse potential energy model. It is found that the deformed Rosen–Morse potential model and the well-known Tietz potential model are the same empirical potential function for diatomic molecules. With the help of the energy spectrum expression of the deformed Rosen–Morse potential model, we obtain exact closed-form expressions of diatomic anharmonicity constants $\omega _e x_e $ ω e x e and $\omega _e y_e $ ω e y e .  相似文献   

9.
We report extensive quasi-classical trajectory calculations of the HO + CO → H + CO(2) reaction on a newly developed potential energy surface based on a large number of UCCSD(T)-F12/AVTZ calculations. This complex-forming reaction is known for its unusual kinetics and dynamics because of its unique potential energy surface, which is dominated by the HOCO wells flanked by an entrance channel bottleneck and a transition state leading to the H + CO(2) products. It was found that the thermal rate coefficients are in reasonably good agreement with known experimental data in both low and high pressure limits. Excitation of the OH vibration is shown to enhance reactivity, due apparently to its promoting effect over the transition state between the HOCO intermediate and the H + CO(2) product. On the other hand, neither CO vibrational excitation nor rotational excitation in either CO or OH has a significant effect on reactivity, in agreement with experiment. However, significant discrepancies have been found between theory and the available molecular beam experiments. For example, the calculated translational energy distribution of the products substantially underestimates the experiment. In addition, the forward bias in the differential cross section observed in the experiment was not reproduced theoretically. While the origin of the discrepancies is still not clear, it is argued that a quantum mechanical treatment of the dynamics might be needed.  相似文献   

10.
A detailed quasi-classical trajectory study of the H + CO(2) → HO + CO reaction is reported on an accurate potential energy surface based on ab initio data. The influence of the vibrational and rotational excitations of CO(2) was investigated up to the collision energy of 2.35 eV. It was found that the total reaction integral cross section increases monotonically with the collision energy, consistent with experimental results. The excitation of the CO(2) bending vibration enhances the reaction, while the excitation in its asymmetric stretching vibration inhibits the reaction. The calculated thermal rate constants are in excellent agreement with experiment. At the state-to-state level, the rotational state distributions of the HO product are in good agreement with experimental results, while those for the CO product are much hotter than measurements. The calculated differential cross sections are dominated by forward scattering, suggesting that the lifetime of the HOCO intermediate may not be sufficiently long to render the reaction completely statistical.  相似文献   

11.
12.
The potential energy surfaces of the HN—O2 and PhN—O2 systems were calculated by the MP2 and B3LYP methods. The mechanism of photooxidation of azides was refined. Photooxidation produces the nitrene—O2 adducts with dioxaziridine and non-cyclic structures. The parameters of IR spectra of the adducts were calculated. The rearrangement of dioxaziridine to a nitro compound is likely a reason for chemiluminescence accompanying the photooxidation of azides.  相似文献   

13.
In this paper, we present a model of potential energy surface for the H2O HCl system, consisting in the exact transformation of quantum chemical input data related to a minimal number of significant configurations. Both molecules are assumed as rigid. The interaction potential is given by an expansion in real spherical harmonics depending on the distance between the two centers of mass of the molecules and on four angles that define their mutual orientation. The main target of this work is the construction of a model of potential energy surface that requires a limited number of single energy points, which is suitable for applications to classical and quantum molecular dynamics simulations, permitting interpolation and further implementation of different sets of input data.  相似文献   

14.
We report a chemically accurate global potential energy surface for the HOCO system based on high-level ab initio calculations at ~35,000 points. The potential energy surface is shown to reproduce important stationary points and minimum energy paths. Quasi-classical trajectory calculations indicated a good agreement with experimental data.  相似文献   

15.
A self-consistent-field (SCF)-configuration interaction (CI) (SCF-CI) method for determining the potential energy surface of a triatomic molecule from the observed vibrational band origins has been suggested. By this method, the SCF-CI procedure in the internal coordinates is used to calculate the vibrational bond origins and their first derivatives with respect to parameters in the potential energy function using the exact vibrational Hamiltonian, and the optimizer LMF in the nonlinear-squares problem is employed to optimize parameters in the potential energy function. This approach is used to optimize the potential energy function of the water molecule. The standard deviation of this fitting to the 70 observed band origins is 1.154cm-1.  相似文献   

16.
The potential energy surfaces for the electronic ground state of the HXeCl and HXeF molecules areconstructed by using the internally contracted multi-reference configuration interaction with theDavidson correction(icMRCI Q)method and large basis sets.The stabilities and dissociation barriersare identified from the potential energy surfaces.The three-body dissociation channel is found to bethe dominate dissociation channel for HXeCl,while two dissociation channels are possible and com-petitive for HXeF.Based on the obtained potentials,vibrational energy levels of HXeCl and HXeF arecalculated using the Lanczos algorithm.Our theoretical results are in good agreement with the avail-able observed values.Particularly,the calculated fundamental frequency of the H—Xe stretching vi-bration including the Xe matrix effect of HXeCl is found to be 1666.6 cm-1,which is only 17.6 cm-1higher than the recently observed value of 1649 cm-1.  相似文献   

17.
The potential energy curves PMO—RKR—van der Waals of the electronic A1Σ+ and X1Σ+ states of RbH have been determined. The potentials obtained are self-consistent with the experimental data because they have been tested by direct numerical solution of the radial Schrödinger equation. From exact vibrational eigenfunctions probability density distributions and Franck—Condon factors have been calculated over the range of vibrational levels observed. It is observed that the anomalous behaviour of the A1Σ+ state arises in the υ′ = 1, 2 and 3 levels with probability density functions similar to those of a harmonic oscillator.  相似文献   

18.
Padash  Rahman 《Structural chemistry》2020,31(6):2227-2236
Structural Chemistry - An interpolated potential energy surface to describe the gas phase CS+OH reaction has been constructed by quantum chemical ab-initio data. Quasi-classical trajectory...  相似文献   

19.
The paper presents a study of 5-MeV energy Au+ ion implantation in polar c-plane (0001), nonpolar a-plane (11-20) and m-plane (10–10) ZnO crystallographic cuts using fluences of 5 × 1014 and 1 × 1015 cm−2. The implanted samples were subsequently annealed in O2 atmosphere at 600°C. It was shown that a-plane ZnO exhibited a lowest level of Zn sublattice disorder evidenced by Rutherford backscattering spectroscopy in channelling mode (RBS-C); in contrast, m-plane ZnO showed the highest disorder. The disorder in the Zn sublattice grew progressively in the subsurface as well as in the implanted layer in c-plane and m-plane ZnO, while a-plane has shown slight increase of disorder just in the implanted layer. Angular scans provided using RBS-C have shown the preservation of channelling effect in the subsurface layer in a-plane ZnO. On the contrary, the narrowed and shallow angular scan dips were seen in m-plane ZnO. Raman spectroscopy has shown significant O-sublattice disorder and O rearrangement mainly in a-plane and m-plane ZnO compared to c-plane. After ion implantation, the exciton-related luminescence band at 375 nm vanished almost completely, and the defect-related band ‘shifted’ to shorter wavelengths. Annealing has beneficial influence on near-band-edge (NBE) luminescence recovery, whereas deep-level-emission (DLE) luminesce has been shifted to lower wavelengths than appeared after implantation.  相似文献   

20.
The electronic potential for the ground state of H2 and D2, molecules has been calculated from spectroscopic molecular constants. Numerical integration of the radial wave equation gives accurate self-consistent values (an eigenvalue mean deviation of about 1 cm−1). A comparison between different potentials is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号