共查询到20条相似文献,搜索用时 15 毫秒
1.
Sağlam A Ucun F Güçlü V 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,67(2):465-471
The optimised molecular structures, vibrational frequencies and corresponding vibrational assignments of the cis and trans conformers of 2-, 3- and 4-pyridine carboxaldehydes have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-311++G(d, p) basis set. The calculations were adapted to the C(S) symmetries of all the molecules. The mean vibrational deviations between the vibrational frequency values of the two conformers of all the compounds have been seen to increase while the relative energies increase and it was concluded the more different the molecular structure of the two conformers is the higher the relative energy is between them, and thus a bigger mean vibrational deviation. 相似文献
2.
Ucun F Güçlü V Sağlam A 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,70(3):524-531
The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments of conformations of 2-hydroxy-3-nitropyridine and 3-hydroxy-2-nitropyridine molecules have been investigated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-311++G(d,p) basis set. The comparison of the experimental and calculated spectra of the molecules have shown that they exist in two conformations with the two OH bond angles (110 degrees and 250 degrees ) respective to the CO bond in the ground state and their energy curves having two minimums have been drawn. 相似文献
3.
Ye Y Ruan M Song Y Li YY Xie W 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,68(1):85-93
2-(4-Fluorobenzylideneamino)-3-mercaptopropanoic acid (4-FC) was synthesized through the reaction of 4-fluorobenzaldehyde and l-cysteine in refluxing EtOH. Its structure was verified by (1)H NMR, FT-IR and Raman. The ground-state geometries were optimized at B3LYP/6-31G**, B3LYP/6-31G*, HF/6-31G** and HF/6-31G* levels without symmetry constrains, respectively. The vibrational wavenumbers of 4-FC were calculated at same level. The scaled theoretical spectra using B3LYP methods, which are in a good agreement with the experimental ones, are superior to those using HF methods. 相似文献
4.
Umar Y 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,71(5):1907-1913
The torsional potentials, molecular conformations and vibrational spectra, of 2-, 3- and 4-formyl pyridine have been investigated using density functional theory (DFT) method with 6-31+G* basis set. From the calculations, 2-formyl pyridine and 3-formyl pyridine were predicted to exist predominantly in cis conformation with the cis-trans rotational barrier of 9.38 kcal/mol and 8.55 kcal/mol, respectively. The two equivalent planar structures of 4-formyl pyridine are separated by an energy barrier of 7.18 kcal/mol. The vibrational wavenumbers and the corresponding vibrational assignments of molecules in C(s) symmetry were examined theoretically and the calculated Infrared of the molecules in the cis conformation was plotted. Observed wavenumbers for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of DFT force fields using the standard 6-31+G* basis set of the theoretical optimized geometry. 相似文献
5.
Song YZ Ruan M Ye Y Li YY Xie W Shen J Shen AG 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,69(2):682-687
2-(4-Fluorobenzylideneamino)-3-(4-hydroxyphenyl) propanoic acid (4-FT) was synthesized through the reaction of 4-fluorobenzaldehyde and l-tyrosine in refluxing EtOH. The structure of 4-FT was verified by measuring 1H NMR, FTIR and Raman. The ground-state geometries were optimized at B3LYP/6-31G**, B3LYP/6-31G*, HF/6-31G** and HF/6-31G* levels without symmetry constrains. The vibrational wavenumbers of 4-FT were calculated at same levels. The scaled spectra using B3LYP methods, which are in a good agreement with the measured spectra, are superior to those calculated using HF methods. 相似文献
6.
Yusuf Erdogdu M. Tahir Güllüolu 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,74(1):162-167
The experimental and theoretical vibrational spectra of 2 and 3-methylpiperidine (abbreviated as 2-MP and 3-MP) were studied. The FT-Infrared spectra of 2-MP and 3-MP molecules were recorded in the liquid phase. The structural and spectroscopic analysis of the title molecules were made by using density functional harmonic calculations. For the title molecules, only one form was found most stable structure by using B3LYP level with the 6-311G (d,p) basis set. Selected experimental bands were assigned and characterized based on the scaled theoretical wave numbers by their total energy distribution (TED). 相似文献
7.
Feki H Fourati N Abid Y Minot C 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,67(5):1201-1205
The molecular structure and vibrational spectra of 3-acetyl-4-[N-(2'-aminopyridinyl)-3-amino]-3-buten-2-one (C(11)H(13)N(3)O(2)) in the ground state have been investigated by Hartree-Fock and density functional method (B3LYP and BLYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of title compound and calculated results by HF and DFT methods indicate that B3LYP is superior to the scaled HF approach for molecular problems. 相似文献
8.
Krishnakumar V Balachandran V 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2006,63(2):464-476
FT-IR and FT-Raman spectra of 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (HMN) and 2-methoxy-1-naphthaldehyde (MN) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structure, conformational stability, geometry optimization, vibrational frequencies have been investigated. The total energy calculations of HMN and MN were tried for various possible conformers. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using B3LYP/6-31G* and B3LYP/6-311+G** level and basis set combinations and was scaled using various scale factors yielding good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. 相似文献
9.
Krishnakumar V Balachandran V 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,61(5):1001-1006
The geometry, frequency and intensity of the vibrational bands 5-fluoro, 5-chloro and 5-bromo-cytosines (5-FC, 5-ClC and 5-BrC) were obtained by the density functional theory (DFT) calculations with Becke3-Lee-Yang-Parr (B3LYP) functional and 6-31G* basis set. The effects of fluorine, chlorine and bromine substituents on the vibrational frequencies of cytosines have been investigated. The assignments have been proposed with the aid of the results of normal coordinate analysis. The observed and the calculated spectra are found to be in good agreement. 相似文献
10.
A recent report of the structural and vibrational properties of heme-bound HNO in myoglobin, MbHNO, revealed a long Fe-N(HNO) bond with the hydrogen atom bonded to the coordinated N atom. The Fe-N(H)-O moiety was reported to exhibit an unusually high Fe-N(HNO) stretching frequency relative to those of the corresponding [FeNO]6 and [FeNO]7 porphyrinates, despite the Fe-N(HNO) bond being longer than either of its Fe-N(NO) counterparts. Herein, we present results from density functional theory calculations of an active site model of MbHNO that support the previous assignment and clarify this seemingly contradictory result. The results are consistent with the experimental evidence for a ground-state Fe-N(H)-O structure having a long Fe-N(HNO) bond and a uniquely high nu(Fe)(-)(N(HNO)) frequency. This high frequency is the result of the correspondingly low reduced mass of the normal mode, which is largely attributable to significant motion of the N-bound hydrogen atom. Additionally, the calculations show the Fe-N(H)O bonding in this complex to be remarkably insensitive to whether the HNO and ImH ligand planes are parallel or perpendicular. This is attributed to insensitivities of the Fe-L(axial) characters of molecular orbitals to the relative HNO and ImH orientation in both the parallel and perpendicular conformers. 相似文献
11.
12.
《Vibrational Spectroscopy》2007,43(2):325-332
The molecular geometry, the normal mode frequencies and corresponding vibrational assignments of 2-,4-,6-methylquinoline (2-,4-,6-mq) in the ground state were performed by HF and DFT/B3LYP levels of theory using the 6-31++G(d,p) basis set. Harmonic and anharmonic vibrational frequencies were calculated. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method by using parallel quantum mechanic solutions program. The general agreements between the observed and calculated frequencies are shown. 相似文献
13.
Kurt M Sertbakan TR Ozduran M 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,70(3):664-673
The experimental and theoretical vibrational spectra of 3- and 4-pyridineboronic acids (abbreviated as p3 and p4) were studied. The Fourier transform Raman and Fourier transform infrared spectra of p3 and p4 molecules were recorded in the solid phase. The structural and spectroscopic analysis of the p3 and p4 acids were made by using density functional harmonic calculations. Both p3 and p4 only one form was most stable using B3LYP level with the 6-31G(d), 6-31G(d,p), 6-311G(d), 6-311G(d,p) and 6-311++G(d,p) basis sets. Selected experimental bands were assigned based on the scaled theoretical wavenumbers. Finally, geometric parameters, infrared and Raman bands and intensities were compared with experimental data of the molecules. 相似文献
14.
Shin-ya K Sugeta H Shin S Hamada Y Katsumoto Y Ohno K 《The journal of physical chemistry. A》2007,111(35):8598-8605
The absolute configuration and conformation of 1-phenylethanol (1-PhEtOH) have been determined by matrix-isolation infrared (IR) and vibrational circular dichroism (VCD) spectroscopy combined with quantum chemical calculations. Quantum chemical calculations have identified that there are three conformers, namely, I, II, and III, in which characteristic intramolecular interactions are found. The IR spectrum-conformation correlation for 1-PhEtOH has been developed by the Ar matrix-isolation IR measurement and used for the assignments of the observed IR bands. In a dilute CCl(4) solution, 1-PhEtOH exists predominantly as conformer I along with a trace amount of conformer II. By considering conformations and intermolecular hydrogen-bonding in the spectral simulation for (S)-1-PhEtOH, we have successfully reproduced the VCD spectrum of (-)-1-PhEtOH observed in a dilute CS(2) solution. Thus, (-)-1-PhEtOH is of S-configuration and conformer I in the dilute solution. The same method has been applied to analyze the VCD spectra measured in the liquid state of (-)-1-PhEtOH. The absolute configuration of 1-PhEtOH in the condensed phase is enabled by identifying VCD bands that are insensitive to conformational changes and intermolecular interactions. The present work provides a combinatorial procedure for determination of both the absolute configuration and the conformation of chiral molecules in a dilute solution and condensed phase. 相似文献
15.
Swaminathan J Ramalingam M Sundaraganesan N 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,71(5):1776-1782
In this work, we report a combined experimental and theoretical study on molecular and vibrational structure of 3-amino-5-hydroxypyrazole (3A5HP). The Fourier transform infrared and Fourier transform Raman spectra of 3A5HP were recorded in the solid phase. The molecular geometry and vibrational frequencies of 3A5HP in the ground state have been calculated by using the density functional method B3LYP with basis sets, 6-311++G(d,p), 6-311+G(3df,2p), 6-311+G(3df,2pd), CC-pVDZ, aug-CC-pVDZ and CC-pVTZ. The optimized geometrical parameters obtained by B3LYP show best agreement with the experimental values. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed. 相似文献
16.
以1-苯基-3-甲基-4-苯甲酰基-5-吡唑啉酮(Hpmbp)和4,4′-二甲基-2,2′-联吡啶(dmbipy)为配体合成了一类单核稀土配合物[Ln(pmbp)3(dmbipy)]·C2H5OH,其中Ln=Tb (1-Tb)、Ho (1-Ho)、Er (1-Er)、Tm (1-Tm)。结构表征显示该类配合物由稀土金属离子与3个pmbp-配体、1个dmbipy配体配位而成,同时存在一分子非配位的乙醇。Ln3+离子的配位环境均接近于三角十二面体构型。荧光测试表明,1-Tb、1-Ho、1-Er和1-Tm均表现出了相应稀土离子的特征发射峰。此外,利用密度泛函理论计算分析了Hpmbp配体、dmbipy配体及稀土配合物的HOMO-LUMO信息。 相似文献
17.
以1-苯基-3-甲基-4-苯甲酰基-5-吡唑啉酮(Hpmbp)和4,4′-二甲基-2,2′-联吡啶(dmbipy)为配体合成了一类单核稀土配合物[Ln(pmbp)3(dmbipy)]·C2H5OH,其中 Ln=Tb (1-Tb)、Ho (1-Ho)、Er (1-Er)、Tm (1-Tm)。结构表征显示该类配合物由稀土金属离子与3个pmbp-配体、1个dmbipy配体配位而成,同时存在一分子非配位的乙醇。Ln3+离子的配位环境均接近于三角十二面体构型。荧光测试表明,1-Tb、1-Ho、1-Er和1-Tm均表现出了相应稀土离子的特征发射峰。此外,利用密度泛函理论计算分析了Hpmbp配体、dmbipy配体及稀土配合物的HOMO-LUMO信息。 相似文献
18.
Krishnakumar V Balachandran V 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,61(8):1811-1819
The FTIR and FT-Raman spectra of 2,6-dibromo-4-nitroaniline (2,6-DB4NA) in solid phase and 2-(methylthio)aniline (2-MTA) in liquid phase were measured. The geometry and normal vibrations have been obtained from the density functional theory (DFT) with the B3LYP method employing the 6-31G* basis set. Scale factors, which bring computational frequencies in closer agreement with the experimental data, have been calculated for predominant vibrational motions of the normal modes. The effects of the amino, bromine, nitro, thio and methyl substituents on vibrational frequencies have been investigated. The infrared and Raman spectra were also predicted from the calculated intensities. The observed and the calculated spectra were found to be in good agreement. 相似文献
19.
We report a detailed density functional theory (B3LYP) analysis of the gas-phase H2O2 formation from H2 and O2 on Au3, Au4+, Au5, and Au5-. We find that H2, which interacts only weakly with the Au clusters, is dissociatively added across the Au-O bond, upon interaction with AunO2. One H atom is captured by the adsorbed O2 to form the hydroperoxy intermediate (OOH), while the other H atom is captured by the Au atom. Once formed, the hydroperoxy intermediate acts as a precursor for the closed-loop catalytic cycle. An important common feature of all the pathways is that the rate-determining step of the catalytic cycle is the second H2 addition to form H2O2. The H2O2 desorption is followed by O2 addition to AunH2 to form the hydroperoxy intermediate, thus leading to the closure of the cycle. On the basis of the Gibbs free energy of activation, out of these four clusters, Au4+ is most active for the formation of the H2O2. The 0 K electronic energy of activation and the DeltaGact at the standard conditions are 12.6 and 16.6 kcal/mol respectively. The natural bond orbital charge analysis suggests that the Au clusters remain positively charged (oxidic) in almost all the stages of the cycle. This is interesting in the context of the recent experimental evidence for the activity of cationic Au in CO oxidation and water-gas shift catalysts. We have also found preliminary evidence for a correlation between the activation barrier for the first H2 addition and the O2 binding energy on the Au cluster. It suggests that the minimum activation barrier for the first H2 addition is expected for the Au clusters with 7.0-9.0 kcal/mol O2 binding energy, i.e., in the midrange of the expected interaction energy. This represents a balance between more favorable H2 dissociation when the Aun-O2 interaction is weaker and high O2 coverage when the interaction is stronger. On the basis of this work, we predict that the hydroperoxy intermediate formation can be both thermodynamically and kinetically viable only in a narrow range of the O2 binding energy (10.0-12.0 kcal/mol)-a useful estimate for computationally screening Au-cluster-based catalysts. We also show that a competitive channel for the OOH desorption exists. Thus, in propylene epoxidation both OOH radicals and H2O2 can attack the active Ti in/on the Au/TS-1 and generate the Ti-OOH sites, which can convert propylene to propylene oxide. 相似文献
20.
Gupta VP 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,67(3-4):870-876
The paper reports main results of a comprehensive study of the vibrational spectrum of ketene computed using second-order perturbation theory treatment based on quartic, cubic and semidiagonal quartic force constants. Two different models--a homogeneous model using the same density functionals and basis functions for the harmonic calculations and anharmonic corrections, and a hybrid model in which the two parts of the calculation are conducted using different density functionals and basis sets--have been employed in the present calculations. Different DFT and CCSD methods and DZ and TZ extended basis sets involving diffuse and polarization functions have been used to calculate optimized and vibrationally averaged geometrical parameters, the harmonic and anharmonic vibrational frequencies and the spectroscopic constants such as anharmonicity constants, rotational constants, rotation-vibration coupling constants, Nielsen's centrifugal distortion constants and Coriolis coupling constants. Homogeneous model is found to be superior to the hybrid model in several respects. Difficulties in the hybrid model may arise due to one of the following reasons: (a) the basic requirement that the geometry optimization and frequency calculations must be done at the same level of theory to have valid frequencies is not met in the hybrid model; (b) the molecular structure gets reoptimized at the low level for anharmonic corrections; (c) in addition, the perturbation could also diverge for the above reasons, particularly for the very low, very anharmonic terms where the harmonic approximation is not close enough to make the perturbation work. 相似文献