首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of hexafluorocyclotriphosphazene (N3P3F6) with trimethyl(trifluoromethyl)silane in the presence of a catalytic amount of cesium fluoride in THF produced hexakis(trifluoromethyl)cyclotriphosphazene [N3P3(CF3)6] in 90% isolated yield. N3P3(CF3)6 is fully characterized by melting point, IR, NMR (19F, 13C, 31p), MS, and elemental analysis data. Single-crystal X-ray structures of N3P3(CF3)6 and N3P3F6 are reported.  相似文献   

2.
The cyclotriphosphazene P(3)N(3)Cl(6) reacts with six equivalents of DMAP (4-(dimethylamino)pyridine) in superheated chloroform to form crystals of composition [P(3)N(3)(DMAP)(6)]Cl(6).19CHCl(3) comprising [P(3)N(3)(DMAP)(6)](6+) ions, which host five chloride ions in basket-type cavities on either side of the ring and at equatorial positions via tetradentate ortho-H-donor arrangements.  相似文献   

3.
The reaction of hexakis(2-pyridyloxy)cyclotriphosphazene (L) and hexakis(4-methyl-2-pyridyloxy)cyclotriphosphazene (MeL) with copper(ii) chloride afford the complexes [CuLCl(2)], [(CuCl(2))(2)(MeL)], [CuLCl]PF(6) and [Cu(MeL)Cl]PF(6). The single-crystal X-ray structure of [CuLCl(2)] shows the copper ion to be in a square based pyramidal distorted trigonal bipyramidal (SBPDTBP) environment (tau= 0.47) with L acting as a kappa(3)N donor, coordinating via the nitrogen atoms from two non-geminal pyridyloxy pendant arms, a nitrogen atom in the phosphazene ring and two chloride ions. In the dimetallic complex, [(CuCl(2))(2)(MeL)], the geometry about both (symmetry related) copper(ii) centres is also SBPDTBP (tau= 0.57) with a 'N(3)Cl(2)' donor set. In the monocation of [CuLCl]PF(6), L acts as a kappa(5)N donor, bonding to the copper(ii) centre through the nitrogen atoms of four pyridyloxy pendant arms, a phosphazene ring nitrogen atom and a chloride ion to give an elongated rhombic octahedral coordination sphere. The phosphazene ring atoms remain virtually coplanar in all three structures as a consequence of the phenoxy-hinge, which links the pyridine pendant donors to the cyclotriphosphazene platform, allowing the formation of six-membered chelate rings. The spectroscopic (mass spectral, EPR and electronic) and magnetic properties of the complexes are discussed. The EPR and variable temperature magnetic susceptibility results for the dicopper complex, [(CuCl(2))(2)(MeL)], point to a very weak electronic interaction between the metal atoms.  相似文献   

4.
meso-Anisyl boron dipyrrins (BODIPYs) 1-6 containing one to six bromines at the pyrrole carbons have been synthesized by treating meso-anisyl dipyrromethane with 'n' equivalents of N-bromosuccinimide in THF at room temperature followed by oxidation with DDQ, neutralization with triethylamine and further complexation with BF(3)·OEt(2). The brominated compounds were characterized by HR-MS mass, detailed (1)H, (19)F and (11)B NMR and X-ray diffraction studies. The crystal structures solved for compounds 2-6 indicate that the boron dipyrrinato framework comprised two pyrrole rings and one six membered boron containing ring in one plane like other reported BODIPYs. However, the dihedral angle between the BODIPY core and the meso-anisyl group varied from 48° to 88° and the meso-anisyl ring has an almost perpendicular orientation in penta 5 and hexabrominated 6 BODIPYs. The absorption and emission studies showed a bathochromic shift and reached a maximum for tetrabrominated derivative 4, after which there was no change in the peak maxima for penta 5 and hexabrominated 6 derivatives. However, the quantum yields were reduced with the increasing number of bromines. The electrochemical studies revealed that brominated BODIPY compounds 1-6 are easier to reduce compared to unsubstituted meso-anisyl BODIPY 8 and the reduction potential is linearly related to the number of Br groups.  相似文献   

5.
The synthesis and structural characterization of the compounds MesAlCl(2)(THF) (1), MesAlCl(2) (2), MesAl(H)Cl(THF) (3a), MesAl(H)Cl (4a), and (MesAlH(2))(2) (5) (Mes = 2,4,6-t-Bu(3)C(6)H(2)(-)) are described as well as those for two compounds 3b and 4b that are analogs of 3a and 4a but have H:Cl ratios that are less than 1:1. All compounds were characterized by (1)H, (13)C NMR, and IR spectroscopy, and 1, 2, 3a, and 4b were additionally characterized by X-ray crystallography. Compound 1 is best synthesized by the reaction of [(THF)(2)LiH(3)AlMes](2) (6) with 6 equiv of Me(3)SiCl. A more conventional route involving the addition of (THF)(2)LiMes to 2 equiv of AlCl(3) in toluene usually affords a mixture of 1 and AlCl(3).THF. Recrystallization of 1 from n-hexane results in a species that has less than 1 equiv of THF per MesAlCl(2). The THF free complex 2 may be obtained in quantitative yield by heating 1 for 20 min at 90 degrees C under reduced pressure. Compound 3a may be obtained by treating a 1:1 mixture of MesLi(THF)(2) and LiAlH(4) with 2 equiv of Me(3)SiCl or by the addition of slightly less than 4 equiv of Me(3)SiCl to 6. The THF can be removed from 3a by sublimation to give 4a. The related compounds 3b and 4b, which display an aluminum-bound H:Cl ratio that is deficient in H, can be obtained by reactions with slightly more than 2 equiv of Me(3)SiCl. Crystal data at 130 K with Cu Kalpha (lambda = 1.541 78 ?) radiation: 1, C(22)H(37)AlCl(2)O, a = 11.889(3) ?, b = 9.992(3) ?, c = 19.704(5) ?, orthorhombic, space group Pca2(1), Z = 4, R = 0.068 for 1556 (I > 2sigma(I)) data; 2, C(18)H(29)AlCl(2), a = 12.147(5) ?, b = 18.042(6) ?, c = 17.771(7) ?, beta = 95.77(3) degrees, monoclinic, space group P2(1)/n,Z = 8, R = 0.032 for 4610 (I > 2sigma(I)) data; 3a, C(22)H(38)AlClO, a = 16.887(7) ?, b = 16.333(6) ?, c = 8.739(3) ?, beta = 101.41(3) degrees, monoclinic, space group P2(1)/c, Z = 4, R = 0.073 for 2752 (I > 2sigma(I)) data; 4b, C(18)H(29.64)AlCl(1.36), a = 12.077(3) ?, b = 17.920(3) ?, c = 17.634(5) ?; beta = 95.21(2) ?, monoclinic, space group P2(1)/n,Z = 8, R = 0.070 for 4261 (I > 2sigma(I)) data.  相似文献   

6.
Treatment of ThCl(4)(DME)(2) or UCl(4) with 1 equiv of dilithiumbis(iminophosphorano) methandiide, [Li(2)C(Ph(2)P═NSiMe(3))(2)] (1), afforded the chloro actinide carbene complexes [Cl(2)M(C(Ph(2)P═NSiMe(3))(2))] (2 (M = Th) and 3 (M = U)) in situ. Stable PCP metal-carbene complexes [Cp(2)Th(C(Ph(2)P═NSiMe(3))(2))] (4), [Cp(2)U(C(Ph(2)P═NSiMe(3))(2))] (5), [TpTh(C(Ph(2)P═NSiMe(3))(2))Cl] (6), and [TpU(C(Ph(2)P═NSiMe(3))(2))Cl] (7) were generated from 2 or 3 by further reaction with 2 equiv of thallium(I) cyclopentadienide (CpTl) in THF to yield 4 or 5 or with 1 equiv of potassium hydrotris(pyrazol-1-yl) borate (TpK) also in THF to give 6 or 7, respectively. The derivative complexes were isolated, and their crystal structures were determined by X-ray diffraction. All of these U (or Th)-carbene complexes (4-7) possess a very short M (Th or U)═carbene bond with evidence for multiple bond character. Gaussian 03 DFT calculations indicate that the M═C double bond is constructed by interaction of the 5f and 6d orbitals of the actinide metal with carbene 2p orbitals of both π and σ character. Complex 3 reacted with acetonitrile or benzonitrile to cyclo-add C≡N to the U═carbon double bond, thereby forming a new C-C bond in a new chelated quadridentate ligand in the bridged dimetallic complexes (9 and 10). A single carbon-U bond is retained. The newly coordinated uranium complex dimerizes with one equivalent of unconverted 3 using two chlorides and the newly formed imine derived from the nitrile as three connecting bridges. In addition, a new crystal structure of [CpUCl(3)(THF)(2)] (8) was determined by X-ray diffraction.  相似文献   

7.
Reaction of SnCl(2).dioxane with 2 equiv of Li(THF)(3)Si(SiMe(3))(3) in hexane afforded the cyclotetrastannane [(Me(3)Si)(3)SiSnCl](4) in reasonable yield. From pentane, the product crystallized as a red-orange disolvate in the P&onemacr; space group (triclinic) with a = 14.735(2) ?, b = 14.976(2) ?, c = 24.066(3) ?, alpha = 76.94 degrees, beta = 76.19 degrees, gamma = 62.11 degrees, V = 4517.5 ?(3), and Z = 2. The Sn(4) ring consisted of a slightly distorted, nonplanar (fold angle = 18.9 degrees ) rectangle with Sn-Sn distances of 2.8054(6), 2.8111(6), 2.9122(6), and 2.9146(6) ?. The pentane molecules were disordered. Selected mono- and dihalogermanes were treated with 1 equiv of Li(THF)(3)Si(SiMe(3))(3) or Li(THF)(2.5)Ge(SiMe(3))(3), affording (Me(3)Si)(3)EGe(CF(3))(3) (E = Si, Ge) and (Me(3)Si)(3)GeGeR(3) (R = Cl, CH(3), C(6)H(5)). Besides the monosubstitution product, the reaction of GeCl(4) with 1 equiv of Li(THF)(2.5)Ge(SiMe(3))(3) also gave a small amount of the linear tetragermane (Me(3)Si)(3)GeGeCl(2)GeCl(2)Ge(SiMe(3))(3). Good yields of the analogous phenyl derivative, (Me(3)Si)(3)GeGePh(2)GePh(2)Ge(SiMe(3))(3), were obtained by treating Ph(2)GeCl(2) with 2 equiv of the lithium-germyl reagent.  相似文献   

8.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

9.
Reaction of anhydrous rare earth metal halides MCl(3) with 2 equiv of 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH) and 2 equiv of trimethylsilylmethyl lithium (Me(3)SiCH(2)Li) in THF furnished the complexes [(Im(Dipp)N)(2)MCl(THF)(n)] (M = Sc, Y, Lu). The molecular structures of all three compounds were established by single-crystal X-ray diffraction analyses. The coordination spheres around the pentacoordinate metal atoms are best described as trigonal bipyramids. Reaction of YbI(2) with 2 equiv of LiCH(2)SiMe(3) and 2 equiv of the imino ligand Im(Dipp)NH in tetrahydrofuran did not result in a divalent complex, but instead the Yb(III) complex [(Im(Dipp)N)(2)YbI(THF)(2)] was obtained and structurally characterized. Treatment of [(Im(Dipp)N)(2)MCl(THF)(n)] with 1 equiv of LiCH(2)SiMe(3) resulted in the formation of [(Im(Dipp)N)(2)M(CH(2)SiMe(3))(THF)(n)]. The coordination arrangement of these compounds in the solid state at the metal atoms is similar to that found for the starting materials, although the introduction of the neosilyl ligand induces a significantly greater distortion from the ideal trigonal-bipyramidal geometry. [(Im(Dipp)N)(2)Y(CH(2)SiMe(3))(THF)(2)] was used as precatalyst in the intramolecular hydroamination/cyclization reaction of various terminal aminoalkenes and of one aminoalkyne. The complex showed high catalytic activity and selectivity. A comparison with the previously reported dialkyl yttrium complex [(Im(Dipp)N)Y(CH(2)SiMe(3))(2)(THF)(3)] showed no clear tendency in terms of activity.  相似文献   

10.
Dinuclear Ti(IV), Zr(IV), and Ce(IV) oxo and peroxo complexes containing the imidodiphosphinate ligand [N(i-Pr(2)PO)(2)](-) have been synthesized and structurally characterized. Treatment of Ti(O-i-Pr)(2)Cl(2) with KN(i-Pr(2)PO)(2) afforded the Ti(IV) di-μ-oxo complex [Ti{N(i-Pr(2)PO)(2)}(2)](2)(μ-O)(2) (1) that reacted with 35% H(2)O(2) to give the peroxo complex Ti[N(i-Pr(2)PO)(2)](2)(η(2)-O(2)) (2). Treatment of HN(i-Pr(2)PO)(2) with Zr(O-t-Bu)(4) and Ce(2)(O-i-Pr)(8)(i-PrOH)(2) afforded the di-μ-peroxo-bridged dimers [M{N(i-Pr(2)PO)(2)}(2)](2)(μ-O(2))(2) [M = Zr (3), Ce (4)]. 4 was also obtained from the reaction of Ce[N(i-Pr(2)PO)(2)](3) with 35% H(2)O(2). Treatment of (Et(4)N)(2)[CeCl(6)] with 3 equiv of KN(i-Pr(2)PO)(2) afforded Ce[N(i-Pr(2)PO)(2)](3)Cl (5). Reaction of (Et(4)N)(2)[CeCl(6)] with 2 equiv of KN(i-Pr(2)PO)(2) in acetonitrile, followed by treatment with Ag(2)O, afforded the μ-oxo-bridged complex [Ce{N(i-Pr(2)PO)(2)}Cl](2)[μ-N(i-Pr(2)PO)(2)](2)(μ-O) (6). 6 undergoes ligand redistribution in CH(2)Cl(2) in air to give 5. The solid-state structures of [K(2){N(i-Pr(2)PO)(2)}(2)(H(2)O)(8)](n) and complexes 1-6 have been determined.  相似文献   

11.
Treatment of Ru(PPh3)3Cl2 with K(tpip) (tpip(-)=[N(Ph2PO)2](-)) afforded Ru(tpip)(PPh3)2Cl (1), which reacted with 4- t-Bu-C6H4CN, SO2(g), and NH 3(g) to give Ru(tpip)(PPh3)2Cl(4- t-BuC6H4CN) (2), Ru(tpip)(PPh3)2Cl(SO2) (3), and fac-[Ru(NH3)3(PPh3)2Cl][tpip] (4), respectively. Reaction of [Ru(CO)2Cl2] x with K(tpip) in refluxing tetrahydrofuran (THF) led to isolation of the K/Ru bimetallic compound K 2Ru2(tpip)4(CO)4Cl2 (5). Photolysis of cis-Ru(tpip) 2(NO)Cl in MeCN and wet CH 2Cl 2 afforded cis-Ru(tpip) 2(MeCN)Cl ( 6) and cis-Ru(tpip)2(H2O)Cl (7), respectively. Refluxing 6 in neat THF yielded Ru(tpip) 2(THF)Cl (8). Treatment of Ru(CHR)Cl2(PCy3)2 (Cy=cyclohexyl) with [Ag(tpip)] 4 afforded cis-Ru(tpip)2(CHR)(PCy3) [R=Ph (9), OEt (10)]. Complex 9 is capable of catalyzing oxidation of alcohols and olefins with N-methylmorpholine N-oxide and iodosylbenzene, respectively. The crystal structures of 2-7 and 9 were determined.  相似文献   

12.
Reaction of bis(2-aminoethyl)(3-aminopropyl)amine with C(6)F(6) and K(2)CO(3) in DMSO yields unsymmetrical [(C(6)F(5))HNCH(2)CH(2)](2)NCH(2)CH(2)CH(2)NH(C(6)F(5)) ([N(3)N]H(3)). The tetraamine acts as a tridentate ligand in complexes of the type H[N(3)N]Re(O)X (X = Cl 1, Br 2) prepared by reacting Re(O)X(3)(PPh(3))(2) with [N(3)N]H(3) and an excess of NEt(3) in THF. Addition of 1 equiv of TaCH(CMe(2)Ph)Br(3)(THF)(2) to 1 gives the dimeric compound H[N(3)N]ClReOReBrCl[N(3)N]H (3) in quantitative yield that contains a Re(V)[double bond]O[bond]Re(IV) core with uncoordinated aminopropyl groups in each ligand. Addition of 2 equiv of TaCH(CMe(2)Ph)Cl(3)(THF)(2) to 1 leads to the chloro complex [N(3)N]ReCl (4) with all three amido groups coordinated to the metal, whereas by addition of 2 equiv of TaCH(CMe(2)Ph)Br(3)(THF)(2) to 2 the dibromo species H[N(3)N]ReBr(2) (5) with one uncoordinated amino group is isolated. Reduction of 4 under an atmosphere of dinitrogen with sodium amalgam gives the dinitrogen complex [N(3)N]Re(N(2)) (6). Single-crystal X-ray structure determinations have been carried out on complexes 1, 3, 5, and 6.  相似文献   

13.
Reaction of the deprotonated form of cis-{(t-Bu)N(H)P[μ-N(t-Bu)](2)PN(H)(t-Bu)} with CrCl(3)(THF)(3) afforded the trivalent cis-{(t-Bu)NP[μ-N(t-Bu)](2)PN(t-Bu)}[Li (THF)])CrCl(2) (1). Subsequent reaction with 2 equiv of vinyl Grignard (CH(2)=CH)Mg Cl gave the butadiene derivative (cis-{(t-Bu)NP[μ-N(t-Bu)](2)PN(t-Bu)}[Li(THF)])Cr(cis-η(4)-butadiene) (3) formally containing the metal in its monovalent state. The presence of the monovalent state was thereafter confirmed by DFT calculations. The coordination of the butadiene unit appears to be rather robust since reaction with Me(3)P afforded cleavage of the dimeric ligand core but not its displacement. The reaction formed the new butadiene complex [(t-Bu)N-P-N(t-Bu)]Cr(cis-η(4)-butadiene)PMe(3) (4) containing a regular NPN monoanion. In agreement with the presence of monovalent chromium, complexes 3 and 4 act as single-component self-activating catalysts for selective ethylene trimerization and dimerization, respectively.  相似文献   

14.
Treatment of [Et(4)N][M(CO)(6)] (M = Nb, Ta) with I(2) in DME at -78 degrees C produces solutions of the bimetallic anions [M(2micro-I)(3)(CO)(8)](-). Addition of the tripodal phosphine (t)BuSi(CH(2)PMe(2))(3) (trimpsi) followed by refluxing affords (trimpsi)M(CO)(3)I [M = Nb (1), Ta (2)], which are isolable in good yields as air-stable, orange-red microcrystalline solids. Reduction of these complexes with 2 equiv of Na/Hg, followed by treatment with Diazald in THF, results in the formation of (trimpsi)M(CO)(2)(NO) [M = Nb (3), Ta (4)] in high isolated yields. The congeneric vanadium complex, (trimpsi)V(CO)(2)(NO) (5), can be prepared by reacting [Et(4)N][V(CO)(6)] with [NO][BF(4)] in CH(2)Cl(2) to form V(CO)(5)(NO). These solutions are treated with 1 equiv of trimpsi to obtain (eta(2)-trimpsi)V(CO)(3)(NO). Refluxing orange THF solutions of this material affords 5 in moderate yields. Reaction of (trimpsi)VCl(3)(THF) (6) with 4 equiv of sodium naphthalenide in THF in the presence of excess CO provides [Et(4)N][(trimpsi)V(CO)(3)] (7), (trimpsi)V(CO)(3)H, and [(trimpsi)V(micro-Cl)(3)V(trimpsi)][(eta(2)-trimpsi)V(CO)(4)].3THF ([8][9].3THF). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2.(1)/(2)THF, 3-5, and [8][9].3THF have been established by X-ray diffraction analyses. The solution redox properties of 3-5 have also been investigated by cyclic voltammetry. Cyclic voltammograms of 3 and 4 both exhibit an irreversible oxidation feature in CH(2)Cl(2) (E(p,a) = -0.71 V at 0.5 V/s for 3, while E(p,a) = -0.55 V at 0.5 V/s for 4), while cyclic voltammograms of 5 in CH(2)Cl(2) show a reversible oxidation feature (E(1/2) = -0.74 V) followed by an irreversible feature (0.61 V at 0.5 V/s). The reversible feature corresponds to the formation of the 17e cation [(trimpsi)V(CO)(2)(NO)](+) ([5](+)()), and the irreversible feature likely involves the oxidation of [5](+)() to an unstable 16e dication. Treatment of 5 with [Cp(2)Fe][BF(4)] in CH(2)Cl(2) generates [5][BF(4)], which slowly decomposes once formed. Nevertheless, [5][BF(4)] has been characterized by IR and ESR spectroscopies.  相似文献   

15.
The reaction of Cl(3)PNSiMe(3) with 3 equiv of LiHNR (R = (i)Pr, Cy, (t)Bu, Ad) in diethyl ether produces the corresponding tris(amino)(imino)phosphoranes (RNH)(3)PNSiMe(3) (1a, R = (i)Pr; 1b, R = Cy; 1c, R = (t)Bu; 1d, R = Ad); subsequent reactions of 1b-d with (n)BuLi yield the trilithiated tetraimidophosphates {Li(3)[P(NR)(3)(NSiMe(3))]} (2a, R = Cy; 2b, R = (t)Bu; 2c, R = Ad). The reaction of [((t)BuNH)(4)P]Cl with 1 equiv of (n)BuLi results in the isolation of ((t)BuNH)(3)PN(t)Bu (1e); treatment of 1e with additional (n)BuLi generates the symmetrical tetraimidophosphate {Li(3)[P(N(t)Bu)(4)]} (2d). Compounds 1 and 2 have been characterized by multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy; X-ray structures of 1b,c were also obtained. Oxidations of 2a-c with iodine, bromine, or sulfuryl chloride produces transient radicals in the case of 2a or stable radicals of the formula {Li(2)[P(NR)(3)(NSiMe(3))]LiX.3THF}* (X = Cl, Br, I; R = (t)Bu, Ad). The stable radicals exhibit C(3) symmetry and are thought to exist in a cubic arrangement, with the monomeric LiX unit bonded to the neutral radical {Li(2)[P(NR)(3)(NSiMe(3))]}* to complete the Li(3)N(3)PX cube. Reactions of solvent-separated ion pair {[Li(THF)(4)]{Li(THF)(2)[(mu-N(t)Bu)(2)P(mu-N(t)Bu)(2)]Li(THF)(2)} (6) with I(2) or SO(2)Cl(2) produce the persistent spirocyclic radical {(THF)(2)Li(mu-N(t)Bu)(2)P(mu-N(t)Bu)Li(THF)(2)}* (10a); all radicals have been characterized by a combination of variable concentration EPR experiments and DFT calculations.  相似文献   

16.
The conproportionation reaction between the dimeric diimidouranium(V) species [U(N(t)Bu)(2)(I)((t)Bu(2)bpy)](2) ((t)Bu(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridyl) and UI(3)(THF)(4) in the presence of additional (t)Bu(2)bpy yields U(N(t)Bu)(I)(2)((t)Bu(2)bpy)(THF)(2) (2), an unprecedented example of a monoimidouranium(IV) dihalide complex. The general synthesis of this family of uranium(IV) derivatives can be achieved more readily by adding 2 equiv of MN(H)R (M = Li, K; R = (t)Bu, 2,6-(i)PrC(6)H(3), 2-(t)BuC(6)H(4)) to UX(4) in the presence of coordinating Lewis bases to give complexes with the general formula U(NR)(X)(2)(L)(n) (X = Cl, I; L = (t)Bu(2)bpy, n = 1; L = THF, n = 2). The complexes were characterized by (1)H NMR spectroscopy and single-crystal X-ray diffraction analysis of compounds 2 and {U[N(2,6-(i)PrC(6)H(3))](Cl)(2)(THF)(2)}(2) (4). (The X-ray structures of 5 and 6 are reported in the Supporting Information.)  相似文献   

17.
Treatment of [CrCl3(THF)3] with slightly more than 1 equiv of Li3(N3N) [(N3N)(3-) = ((Me3SiNCH2CH2)3N)(3-)] affords the triamidoamine complex [Cr(N3N)] (1) in 75% yield. 1 is oxidized by PhICl2, CuCl2, or AgCl to give the chromium(IV) complex [Cr(N3N)Cl] (2) in moderate yields. Alternatively, complex 2 is obtained directly from [CrCl3(THF)3] in 50% yield after treatment with 0.5 equiv of Li3(N3N). Both compounds are high-spin complexes bearing three and two unpaired electrons, respectively. Their molecular structures are described revealing a trigonal monopyramidal and trigonal bipyramidal coordination geometry of the chromium center, respectively.  相似文献   

18.
Reaction of [V(IV)OCl(2)(THF)(2)] in aqueous solution with 2 equiv of AgBF(4) or AgSbF(6) and then with 2 equiv of 2,2'-bipyridine (bipy), 4,4'-di-tert-butyl-2,2'-bipyridine (4,4'-dtbipy), or 4,4'-di-methyl-2,2'-bipyridine (4,4'-dmbipy) affords compounds of the general formula cis-[V(IV)O(OH)(L(NN))(2)]Y [where L(NN) = bipy, Y = BF(4)(-) (1), L(NN) = 4,4'-dtbipy, Y = BF(4)(-) (2.1.2H(2)O), L(NN) = 4,4'-dmbipy, Y = BF(4)(-) (3.2H(2)O), and L(NN) = 4,4'-dtbipy, Y = SbF(6)(-) (4)]. Sequential addition of 1 equiv of Ba(ClO(4))(2) and then of 2 equiv of bipy to an aqueous solution containing 1 equiv of V(IV)OSO(4).5H(2)O yields cis-[V(IV)O(OH)(bipy)(2)]ClO(4) (5). The monomeric compounds 1-5 contain the cis-[V(IV)O(OH)](+) structural unit. Reaction of 1 equiv of V(IV)OSO(4).5H(2)O in water and of 1 equiv of [V(IV)OCl(2)(THF)(2)] in ethanol with 2 equiv of bipy gives the compounds cis-[V(IV)O(OSO(3))(bipy)(2)].CH(3)OH.1.5H(2)O (6.CH(3)OH.1.5H(2)O) and cis-[V(IV)OCl(bipy)(2)]Cl (7), respectively, while reaction of 1 equiv of [V(IV)OCl(2)(THF)(2)] in CH(2)Cl(2) with 2 equiv of 4,4'-dtbipy gives the compound cis-[V(IV)OCl(4,4'-dtbipy)(2)]Cl.0.5CH(2)Cl(2) (8.0.5CH(2)Cl(2)). Compounds cis-[V(IV)O(BF(4))(4,4'-dtbipy)(2)]BF(4) (9), cis-[V(IV)O(BF(4))(4,4'-dmbipy)(2)]BF(4) (10), and cis-[V(IV)O(SbF(6))(4,4'-dtbipy)(2)]SbF(6) (11) were synthesized by sequential addition of 2 equiv of 4,4'-dtbipy or 4,4'-dmbipy and 2 equiv of AgBF(4) or AgSbF(6) to a dichloromethane solution containing 1 equiv of [V(IV)OCl(2)(THF)(2)]. The crystal structures of 2.1.2H(2)O, 6.CH(3)OH.1.5H(2)O, and 8.0.5CH(2)Cl(2) were demonstrated by X-ray diffraction analysis. Crystal data are as follows: Compound 2.1.2H(2)O crystallizes in the orthorhombic space group Pbca with (at 298 K) a = 21.62(1) A, b = 13.33(1) A, c = 27.25(2) A, V = 7851(2) A(3), Z = 8. Compound 6.CH(3)OH.1.5H(2)O crystallizes in the monoclinic space group P2(1)/a with (at 298 K) a = 12.581(4) A, b = 14.204(5) A, c = 14.613(6) A, beta = 114.88(1) degrees, V = 2369(1), Z = 4. Compound 8.0.5CH(2)Cl(2) crystallizes in the orthorhombic space group Pca2(1) with (at 298 K) a = 23.072(2) A, b = 24.176(2) A, c = 13.676(1) A, V = 7628(2) A(3), Z = 8 with two crystallographically independent molecules per asymmetric unit. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, conductivity, and CW EPR properties of these oxovanadium(IV) compounds as well as theoretical studies on [V(IV)O(bipy)(2)](2+) and [V(IV)OX(bipy)(2)](+/0) species (X = OH(-), SO(4)(2)(-), Cl(-)).  相似文献   

19.
Treatment of (trimpsi)V(CO)(2)(NO) (trimpsi = (t)BuSi(CH(2)PMe(2))(3)) with 1 equiv of PhICl(2) or C(2)Cl(6) or 2 equiv of AgCl affords (trimpsi)V(NO)Cl(2) (1) in moderate yields. Likewise, (trimpsi)V(NO)Br(2) (2) and (trimpsi)V(NO)I(2) (3) are formed by the reactions of (trimpsi)V(CO)(2)(NO) with Br(2) and I(2), respectively. The complexes (trimpsi)M(NO)I(2)(PMe(3)) (M = Nb, 4; Ta, 5) can be isolated in moderate to low yields when the (trimpsi)M(CO)(2)(NO) compounds are sequentially treated with 1 equiv of I(2) and excess PMe(3). The reaction of (trimpsi)V(CO)(2)(NO) with 2 equiv of ClNO forms 1 in low yield, but the reactions of (trimpsi)M(CO)(2)(NO) (M = Nb, Ta) with 1 equiv of ClNO generate (trimpsi)M(NO)(2)Cl (M = Nb, 6; Ta, 7). Complexes 6 and 7 are thermally unstable and decompose quickly at room temperature; consequently, they have been characterized solely by IR and (31)P[(1)H] NMR spectroscopies. All other new complexes have been fully characterized by standard methods, and the solid-state molecular structures of 1.3CH(2)Cl(2), 4.(3/4)CH(2)Cl(2), and 5.THF have been established by single-crystal X-ray diffraction analyses. A convenient method of generating Cl(15)NO has also been developed during the course of these investigations.  相似文献   

20.
The reaction of Ln(BH(4))(3)(THF)(3) or LnCl(3)(THF)(3) with 1 equiv of KCp*' ligand (Cp' = C(5)Me(4)n-Pr) afforded the new monocyclopentadienyl complexes Cp*'LnX(2)(THF)(n) (X = BH(4), Ln = Sm, n = 1, 1a, Ln = Nd, n = 2, 1b; X = Cl, Ln = Sm, n = 1, 3a) and [Cp*'LnX(2)](n') (X = BH(4), n' = 6, Ln = Sm, 2a, Ln = Nd, 2b; X = Cl, Ln = Nd, 4b). All these compounds were characterized by elemental analysis and (1)H NMR. Crystals of mixed borohydrido/chloro-bridged [Cp*'(6)Ln(6)(BH(4))(12-x))Cl(x)(THF)(n')] (x = 10, n' = 4, Ln = Sm, 2a', Ln = Nd, 2b'; x = 5, n = 2, Ln = Sm, 2a' ') were also isolated. Compounds 2a, 2b, 2a', 2b', and 2a' were structurally characterized; they all exhibit a hexameric structure in the solid state containing the [Cp*(3)Ln(3)X(5)(THF)] building block. The easy clustering of THF adducts first isolated is illustrative of the well-known bridging ability of the BH(4) group. Hexameric 2a was found to be unstable in the presence of THF vapors; this may be correlated to the opening of unsymmetrical borohydride bridges observed in the molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号