首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A comparison of the topology of the experimental electron density, as revealed by high resolution X-ray diffraction, is provided for two prototypal transition metal alkyne complexes where the alkyne formally behaves as a 2 or 4e(-) donor. A higher value of the electron density ρ(r)(bcp) at the M(T)···C bond critical point (bcp), a lower value of ρ(r)(bcp) at the coordinated C≡C bcp, outwardly bent MC bond paths and a close to zero ellipticity for the C[triple bond, length as m-dash]C bond constitute the topological signature of a 4e(-) donor alkyne ligand.  相似文献   

2.
《结构化学》2020,39(8):1489-1495
Metal-organic frameworks are a sort of rapid development crystal solids, which have greatly attracted a large amount of attention in recent decades. The construction of 3D [Ni(bcp)(bpp)]_n(namely complex 1) displays a rare [3+3+3] nine-fold interpenetrated diamond topology, which can be successfully synthesized by a mixed strategy of 1,3-bis(4-carboxyphenoxy) propane(H_2bcp) and 1,4-bis(4-pyridylmethyl) piperazine(bpp). The interpenetrated network may be ascribed to these flexible bridging linkers to facilitate the penetration degree. In addition, the resultant sample was adequately characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction, and thermal gravimetric analysis. Furthermore, the as-synthesized sample can be used as catalysis for chemical fixation of CO_2 and epoxide to carbonate.  相似文献   

3.
DFT calculations with the UX3LYP hybrid functional and a medium-sized 6-311++G(d,p) basis set were performed to examine the gas-phase structure of paramagnetic (S = 1) six-coordinate complexes [Ni(NH3)n(H2O)(6-n)](2+), 0 < or = n < or = 6. Significant interligand hydrogen bonding was found in [Ni(H2O)6](2+), but this becomes much less significant as NH3 replaces H2O in the coordination sphere of the metal. Bond angles and bond lengths obtained from these calculations compare reasonably well with available crystallographic data. The mean calculated Ni-O bond length in [Ni(H2O)6](2+) is 2.093 A, which is 0.038 A longer than the mean of the crystallographically observed values (2.056(22) A, 108 structures) but within 2sigma of the experimental values. The mean calculated Ni-N bond length in [Ni(NH3)6](2+) is 2.205(3) A, also longer (by 0.070 A) than the crystallographically observed mean (2.135(18) A, 7 structures). Valence bond angles are reproduced within 1 degree. The successive replacement of H2O by NH3 as ligands results in an increase in the stabilization energy by 7 +/- 2 kcal mol(-1) per additional NH3 ligand. The experimentally observed increase in the lability of H2O in Ni(II) as NH3 replaces H2O in the coordination sphere is explained by an increase in the Ni-OH2 bond length. It was found from a natural population analysis that complexes with the highest stabilization energies are associated with the greatest extent of ligand-to-metal charge transfer, and the transferred electron density is largely accommodated in the metal 4s and 3d orbitals. An examination of the charge density rho bcp and the Laplacian of the charge density nabla(2)rho(bcp) at the metal-ligand bond critical points (bcp) in the series show a linear correlation with the charge transferred to the metal. Values of nabla(2)rho(bcp) are positive, indicative of a predominantly closed-shell interaction. The charge transferred to the metal increases as n, the number of NH3 ligands in the complex, increases. This lowers the polarizing ability of the metal on the ligand donors and the average metal-ligand bond length increases, resulting in a direct correlation between the dissociation energy of the complexes and the reciprocal of the average metal-ligand bond length. There is a strong correlation between the charge transferred to the metal and experimental DeltaH values for successive replacement of H2O by NH3, but a correlation with stability constants (log beta values) breaks when n = 5 and 6, probably because of entropic effects in solution. Nevertheless, DFT calculations may be a useful way of estimating the stability constants of metal-ligand systems.  相似文献   

4.
Two manganese(II) isocyanate complexes with different flexible zwitterionic dicarboxylate ligands, [Mn(2)(bcpp)(NCO)(4)](n) (1; bcpp=1,3-bis(N-carboxylatomethyl-4-pyridinio)propane) and [Mn(2)(bcp)(NCO)(4)](n) (2; bcp=bis(N-carboxylatomethyl)-4,4'-bipyridinium, have been synthesized and characterized by X-ray crystallography and magnetic measurements. Both compounds consist of two-dimensional coordination layers in which uniform anionic chains with mixed (NCO)(2)(COO) triple bridges are cross-linked by flexible cationic 4,4'-trimethylenedipyridinium spacers. Magnetic studies revealed antiferromagnetic interactions through the triple bridges (J=-8.0 cm(-1) (1) and J=-8.6 cm(-1) (2)), which are stronger than those in the isoelectronic analogue (N(3))(2)(COO). To complement the experimental data, periodic and finite-cluster DFT and CASPT2 calculations were performed on the dimeric units of the (NCO)(2)(COO) and (N(3))(2)(COO) mixed-bridged systems to support the Heisenberg picture and stress the relative efficiency of the magnetic couplers. It was found that the isocyanate ligand plays a greater role in the conveyance of antiferromagnetic behavior than the azide counterpart, and that both pseudohalide bridges function cooperatively with the carboxylate group.  相似文献   

5.
Along with our recent investigation on the flexible ligand of H(2)ADA (1,3-adamantanediacetic acid), a series of Zn(II) and Cd(II) metal-organic frameworks, namely, [Zn(3)(ADA)(3)(H(2)O)(2)](n)·5nH(2)O (1), [Zn(ADA)(4,4'-bipy)(0.5)](n) (2), [Zn(2)(ADA)(2)(bpa)](n) (3), [Zn(2)(ADA)(2)(bpa)](n) (4), [Zn(2)(ADA)(2)(bpp)](n) (5), [Cd(HADA)(2)((4,4'-bipy)](n) (6), [Cd(3)(ADA)(3)(bpa)(2)(CH(3)OH)(H(2)O)](n) (7), and [Cd(2)(ADA)(2)(bpp)(2)](n)·7nH(2)O (8) have been synthesized and structurally characterized (where 4,4'-bipy = 4,4'-dipyridine, bpa = 1,2-bis(4-pyridyl)ethane and bpp = 1,3-bis(4-pyridyl)propane). Due to various coordination modes and conformations of the flexible dicarboxylate ligand and the different pyridyl-containing coligands, these complexes exhibit structural and dimensional diversity. Complex 1 exhibits a three-dimensional (3D) framework containing one-dimensional (1D) Zn(II)-O-C-O-Zn(II) clusters. Complex 2 exhibits a 2D structure constructed by 1D double chains based on [Zn(2)ADA(2)] units and a 4,4'-bipy pillar. Complexes 3 and 4 possess isomorphic 2D layer structures, resulting from the different coordination modes of carboxylate group of ADA ligands. Complex 5 features a 2D 4(4) layer in which ADA ligands and Zn(II) atoms construct a 1D looped chain and the chains are further connected by bpp ligands. Complex 6 is composed of 1D zig-zag chains that are entangled through hydrogen-bonding interactions to generate a 2D network. Complex 7 is a rare (3,5)-connected network. Complex 8 possesses a 3D microporous framework with lots of water molecules encapsulated in the channels. The structural diversity of the complexes perhaps mainly results from using diverse secondary ligands and different metal centre ions, and means the assistant ligand and metal centre play important roles in the design and synthesis of target metal-organic frameworks. This finding revealed that ADA could be used as an effective bridging ligand to construct MOFs and change coordination modes and conformational geometries in these complexes. The thermogravimetric analyses, X-ray powder diffraction and solid-state luminescent properties of the complexes have also been investigated.  相似文献   

6.
Six new metal-organic frameworks [Cu(obba)(bimb)·(obbaH(2))](n) (1), [Cu(obba)(bimb)](n) (2), [Zn(2)(obba)(2)(bimb)(2)(DMF)(2)(H(2)O)(3.5)](n) (3), [Ni(3)(2,2',4,4'-bptcH)(2)(bimb)(2)(H(2)O)(2)·(H(2)O)(2)](n) (4), [Ni(2)(bimb)(3)(H(2)O)(6)·(aobtc)·(DMF)(2)·(H(2)O)(2)](n) (5) and [Cd(3,3',4,4'-bptcH(2))(H(2)O)·(bimb)](n) (6), were obtained by reactions of 4,4'-bis(1-imidazolyl)biphenyl (bimb) and multi-carboxylic acids of 4,4'-oxybis(benzoic acid) (obbaH(2)), 2,2',4,4'-biphenyltetracarboxylate acid (2,2',4,4'-bptcH(4)), azoxybenzene-3,3',5,5'-tetracarboxylic acid (aobtcH(4)), and 3,3',4,4'-biphenyltetracarboxylate acid (3,3',4,4'-bptcH(4)) with corresponding metal salts under hydro/solvothermal conditions, respectively. Complexes 1-3 have entangled structures with different topologies: 1 is a 3-fold interpenetrating NbO three-dimensional (3D) network; 2 is a 3-fold interpenetrating dmp 3D net; 3 is a 6-fold interpenetrating dia 3D chiral net containing rare 1D helical chains with the same handedness. Complex 4 is an uninodal 6-connected network with a Sch?fli symbol of (4(8)6(4)8(3)) based on the trinuclear Ni(II) subunits, while complexes 5 and 6 are 1D chains. Interestingly, compound 6 represents the rare example of MOFs that exhibit high photocatalytic activity for dye degradation under visible light and shows good stability towards photocatalysis. Complexes 3 and 6 exhibit intense blue emissions in the solid state at room temperature whereas 3 appears to be a good candidate of novel hybrid inorganic-organic NLO material.  相似文献   

7.
A novel entangled architecture [Co(1.5)(bpmp)(Hcda)(cda)(H(2)O)] (1) based on 4(4)-sql subunits, showing an interesting 2D → 3D inclined polycatenation structure feature, is reported. Magnetic investigation shows that compound 1 exhibits coexistence of paramagnetism and canted antiferromagnetism with Tc of 48 K.  相似文献   

8.
To investigate the relationship between network connectivity and metal nuclearity, we designed and synthesized a series of three-dimensional (3D) entangled coordination frameworks based on different metal cores, namely [Zn(2)(bdc)(2)(L)(2)]2H(2)O (1), [Zn(bdc)(L)(0.5)] (2), [Zn(oba)(L)(0.5)] (3) and [Cd(3)(bdc)(3)(L)(2)(H(2)O)(2)] (4) by self-assembly of d(10) metal salts with the flexible long-chain ligand 1,4-bis(1,2,4-triazol-1-yl)butane (L), and with the rigid and nonrigid aromatic dicarboxylate ligands 1,4-benzenedicarboxylate (bdc) and 4,4'-oxybis(benzoate) (oba). Compound 1 exhibits a threefold interpenetrated diamondoid array typically based on a tetrahedral second building unit (SBU) at a single Zn center. Compound 2 adopts a threefold interpenetrated alpha-polonium-type network that is built from bimetallic cores as six-connected vertices. The structure of 3 also consists of dinuclear units; it comprises a novel (3,4)-connected threefold interpenetrated net with complex (4610)(46(2)10(3)) topology when single zinc centers act as four-connected nodes (or the alpha-Po topology if dinuclear units are considered as six-connected nodes). Compound 4, derived from a crosslinked fivefold interpenetrated diamond-like substructure, is an unusual example of a self-penetrating coordination framework displaying an unprecedented eight-connected 4(20)6(8) topology with trinuclear cadmium clusters as eight-connected nodes which, to our knowledge, not only defines a new topology for eight-connected coordination networks, but also represents the highest connected topology presently known for self-penetrating systems. Detailed structural comparison of these complexes indicates that the increase in metal nuclearity induces the progressive increase in the connectivities of the ultimate nets: that is, the metal nuclearity plays a significant role in tuning the connectivity of a specific network. The thermal and luminescent properties of these compounds are discussed.  相似文献   

9.
Self-assembly of manganese acetate with 1,3-bis(4-carboxy-phenoxy)propane (H2bcp) and 1,2-bis(4-pyridyl)ethene (bpe) under solvothermal conditions yielded a polymer {[Mn2(bcp)2(bpe)(DMF)]} n (1), which shows 2-D?→?3-D inclined interpenetration with polyrotaxane character. The magnetic behavior of 1 shows antiferromagnetic exchange between Mn magnetic centers.  相似文献   

10.
A series of Ag(I) coordination compounds, from one-dimensional chains to 3D porous frameworks, were achieved from N,N'-bis[1-(2-pyrazinyl)ethylidene]benzil dihydrazone, L, via self-assembly, using helicates as effective secondary building units. Compound 2 [(Ag(2.75)L)(NO(3))(2.75)] was comprised of two opposite-handed 3D frameworks formed by connecting the 4(1) helical chains into (10(3)-b) nets. The pairs of the racemic 3D frameworks were connected through additional silver(I) centers and entangled each other forming a racemic 3D net. Compound 3 [(Ag(13)L(8))(BF(4))(13)(H(2)O)(12)] was comprised of a 3D framework that was constructed from double-helical building intermediates Ag(2)L(2) with one-dimensional infinite chains being threaded into the large voids of a 3D framework to form a weave structure. The ladder-like chains in compound 4 [(Ag(3)L(2))(ClO(3))(3)(CH(3)OH)(2)(CH(3)CN)] were formed by the addition of excess NaClO(3) into the methanol solution containing AgNO(3) and the ligand L, and the zigzag chains in compound 5 [(Ag(2)L(2))(ClO(4))(2)(CH(3)CN)(2)] were constructed by the addition of excess NaClO(4) into an acetonitrile solution containing AgNO(3) and the ligand L.  相似文献   

11.
Divalent metal coordination polymers containing terephthalate (tere) and bis(4-pyridylformyl)piperazine (bpfp) show diverse and interesting two-dimensional (2D) interpenetrated, three-dimensional (3D) self-penetrated, or one-dimensional (1D) polyrotaxane topological features. Isostructural {[M(tere)(bpfp)(H(2)O)(2)]?4H(2)O}(n) phases (1, Zn; 2, Co) exhibit mutually inclined 2D + 2D → 3D interpenetration of gridlike layers. {[Cd(4)(tere)(4)(bpfp)(3)(H(2)O)(2)]·8H(2)O}(n) (3) possesses a novel 3,4,8-connected trinodal self-penetrated network with (4.6(2))(2)(4(2)6(16)8(7)10(3))(4(2)6(4))(2) topology. [Zn(2)Cl(2)(tere)(bpfp)(2)](n) (4) is the first example of a 1D + 1D → 1D polyrotaxane coordination polymer, to the best of our knowledge. Metal coordination geometry plays a crucial role in dictating the overall dimensionality in this system. Thermal decomposition behavior and luminescent properties of the d(10) configuration metal derivatives are also presented herein.  相似文献   

12.
Using a multicarboxylate ligand, 3,3',4,4'-oxydiphthalic acid (H(4)ODPA), and N-donor ligands, five metal(II)-ODPA complexes formulated as Cu(4)(ODPA)(2)(L1)(4)(H(2)O)(10)·2H(2)O (L1 = 4-(2-(pyridin-4-yl)vinyl)pyridine) (1), Co(H(2)ODPA) (L1)(H(2)O) (2), Zn(2)(ODPA)(2)(H(2)PIP)(2)·H(2)O (PIP = 1,3-bis(4-piperidinyl)propane) (3), Mn(2)(ODPA)(phen)(H(2)O)(2) (phen = phenanthroline) (4) and Cu(2)(H(2)ODPA)(2)(phen)(4)·H(2)O (5) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex 1 shows a three dimensional (3D) framework with an unprecedented (4.6(4).8)(2)(4(2).6(4)) topology generated by the polycatenation of 2D layers. Complex 2 exhibits a uninodal 4-connected 3D architecture with 6(5)8-cds topology. Complex 3 shows a uninodal 2D layer with 4(4)-sql topology. Complex 4 has a binodal (4,6)-connected non-interpenetrated 3D architecture with (3.4(3).5.6)(3(2).4(3).5(4).6(4).7(2)) topology. Complex 5 is a mononuclear Cu(II) complex. Complexes 1 and 5 can irreversibly and reversibly detect SCN(-), Cl(-), Br(-) and I(-) in water, respectively. Complexes 2-4 are not feasible candidates for colorimetric detection of anions in aqueous solution. The metal(II) species and the structure of the metal complex play important roles in the colorimetric detection.  相似文献   

13.
Building on the MOF approach to prepare porous materials, herein we report the engineering of porous BN-doped materials using tricarboxylic hexaarylborazine ligands, which are laterally decorated with functional groups at the full-carbon ‘inner shell’. Whilst an open porous 3D entangled structure could be obtained from the double interpenetration of two identical metal frameworks derived from the methyl substituted borazine, the chlorine-functionalised linker undergoes formation of a porous layered 2D honeycomb structure, as shown by single-crystal X-ray diffraction analysis. In this architecture, the borazine cores are rotated by 60° in alternating layers, thus generating large rhombohedral channels running perpendicular to the planes of the networks. An analogous unsubstituted full-carbon metal framework was synthesised for comparison. The resulting MOF revealed a crystalline 3D entangled porous structure, composed by three mutually interpenetrating networks, hence denser than those obtained from the borazine linkers. Their microporosity and CO2 uptake were investigated, with the porous 3D BN-MOF entangled structure exhibiting a large apparent BET specific surface area (1091 m2 g−1) and significant CO2 reversible adsorption (3.31 mmol g−1) at 1 bar and 273 K.  相似文献   

14.
Xiao DR  Li YG  Wang EB  Fan LL  An HY  Su ZM  Xu L 《Inorganic chemistry》2007,46(10):4158-4166
Self-assembly of long V-shaped ligands and d10 metal salts in the presence of a linear bidentate ligand affords two unprecedented self-penetrating coordination networks {[Zn4(bptc)2(bpy)4].(C5H3N).4H2O}n (1) and {[Cd2(sdba)2(bpy)(H2O)2].2H2O}n (2) (bptc = 3,3',4,4'-benzophenonetetracarboxylate, sdba = 4,4'-sulfonyldibenzoate, bpy = 4,4'-bipyridine). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, X-ray powder diffraction, and TG analyses. 1 adopts a novel 3D framework containing three types of molecular braids, among which the quintuple-stranded molecular braid represents the highest-stranded molecular braid presently known for entangled systems. 2 is an uncommon self-penetrating 2D network containing pseudo-Borromean links and double-stranded helices. More interestingly, when the strong hydrogen bonds between layers are taken into account, the resulting net of 2 becomes an eight-connected 3D self-penetrating network with an unprecedented (421.67) topology, which represents the highest connected topology presently known in self-penetrating systems. Furthermore, the photoluminescent properties of 1 and 2 were studied.  相似文献   

15.
The self-assembly of pyridine-2,4,6-tricarboxylic acid (H(3)ptc) with metal salts under hydrothermal conditions gave two novel coordination polymers, {[Pr(mu(5)-ptc)(H(2)O)(2)].1.5H(2)O}(n)() (1) and {Na(2)NiPr(mu(4)-ClO(4))(mu(2)-HOCH(2)CH(2)OH)(mu(4)-ptc)(2)(H(2)O)(8)}.4.5H(2)O}(n)() (2). 1 is a 3D open network with five ptc ligands coordinating with one metal center and carboxylate groups linking metal centers to form a (4,6) net. 2 is the first Pr/Ni/Na heterotrimetallic complex, a unique 3D framework containing four different bridged ligands in the system.  相似文献   

16.
Three series of porous lanthanide metal-organic coordination polymers, namely [Cu(bpy)Ln(3)(ip)(5)(Hip)(H(2)O)] [Ln = Er (1a), Y (1b), Eu (1c); bpy = 2,2'-bipyridine, H(2)ip=isophthalic acid], [Cu(3)(bpy)(2)Ln(2)(ip)(6)(H(2)O)(5)] [Ln = Yb (2a), Gd (2b), Tb (2c)], and [Cu(3)Ln(2)(ip)(6)] [Ln = Eu (3a), Gd (3b)] have been synthesized hydrothermally by the reaction of the combination of 3d-4f metal centers and N-/O-donor ligands. X-ray diffraction analyses reveal that polymers 1a-c and 2a-c, as well as 3a, b are isomorphous in structure. Polymers 1a-c consist of 3D alpha-Po networks based on a inorganic rod-shaped secondary building units (SBUs) of {Er(6)Cu(2)(bipy)(2)(O(2)C)(11)} which are 27.03 A in length. Polymers 2a-c also contain 3D alpha-Po networks, constructed from shorter (14.79 A) but similarly rod-shaped SBUs of {Yb(2)Cu(3)(bpy)(2)(O(2)C)(12)}. The structure also contains hydrogen-bonded (H(2)O)(6) chains which can be reversibly dehydrated/rehydrated. Polymers 3a, b contain metal carboxylate substructures which have 2D (6,3) topologies; these layers are bridged by the ip(2-) ligands to give an overall 3D network which contains two sorts of cavities. This series of Ln-Cu coordination polymers are further characterized by antiferromagnetic behavior.  相似文献   

17.
In the course of studying the reaction dynamics of F + CH(2)D(2) --> HF + CHD(2), several small features in the (2+1) REMPI spectra of the CHD(2) product were observed. Using the technique of imaging spectroscopy, those new features were identified and assigned to the 2(1)(1), 3(1)(1), and 5(1)(1) bands. The ion velocity-mapped images acquired for those features, however, displayed severe overlaps with each other, rendering data analysis difficult. The extended cross correlation method was then applied for the first time in analyzing the ion images and successfully extracted the genuine pattern of each entangled component, which in turn enables us to focus on the dynamics information embedded in the multicomponent images.  相似文献   

18.
Four new neutral copper-azido polymers [Cu(4)(N(3))(8)(Me-hmpz)(2)](n) (1), [Cu(4)(N(3))(8)(men)(2)](n) (2), [Cu(5)(N(3))(10)(N,N-dmen)(2)](n) (3) and [Cu(5)(N(3))(10)(N,N'-dmen)(5)](n) (4) [Me-hmpz = 1-methylhomopiperazine; men = N-methylethylenediamine; N,N-dmen = N,N-dimethylethylenediamine and N,N'-dmen = N,N'-dimethylethylenediamine] have been synthesized by using various molar equivalents of the chelating diamine ligands with Cu(NO(3))(2)·3H(2)O and an excess of NaN(3). Single-crystal X-ray structures show that the basic asymmetric units of 1 and 2 are very similar, but the overall 1D structures were found to be quite different. Complex 3 with a different composition was found to be 2D in nature, while the 1D complex 4 with 1 : 1 metal to diamine ratio presented several new structural features. Cryomagnetic susceptibility measurements over a wide range of temperature were corroborated with density functional theory calculations (B3LYP functional) performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.  相似文献   

19.
A series of four coordination polymers showing entangled architectures based on cobalt and mixed N-donor/O-donor ligands, namely [Co(4,4'-BPIPA)(TP)]·2DMF (1), [Co(4,4'-BPIPA)(2,6-NDC)(DMF)]·DMF (2), [Co(4,4'-BPIPA)(2,6-NDC)]·2DMF (3) and [Co(4,4'-BPIPA)(4,4'-BPDC)]·2DMF (4) (4,4'-BPIPA = N,N'-bis-4-pyridinyl-isophthalamide, TP = terephthalic acid, 2,6-NDC = 2,6-naphthalenedicarboxylic acid, 4,4'-BPDC = 4,4'-biphenyldicarboxylic acid), have been synthesized under solvothermal conditions. Complex 1, containing 4,4'-BPIPA and relatively short dicarboxylate ligands (TP), exhibits two-dimensional (2D) two-fold interpenetration of double wavy 4(4)-sql nets. Complex 2 displays interesting 2D→3D parallel polycatenation of undulated 2D 4(4)-sql layers built by 4,4'-BPIPA and moderate dicarboxylate ligands (2,6-NDC). Complexes 3 and 4, although constructed of dicarboxylate ligands with different lengths (moderate 2,6-NDC and long 4,4'-BPDC), possess similar 3-fold interpenetration of identical self-catenated single nets with 6(5)·8-mok topologies. It has been found that the length of the dicarboxylate ligands plays a key role of module-matching in the self-assemblies of complexes 1-4. Moreover, the effect of the conformations of 4,4'-BPIPA, which can be controlled by tuning reaction temperatures, is also discussed.  相似文献   

20.
Two families of coordination polymers, {[M(btix)(2)(OH(2))(2)]·2NO(3)·2H(2)O}(n) [M = Co (1), Zn (2), Co-Zn (3); btix = 1,4-bis(triazol-1-ylmethyl)benzene] and {[M(btix)(2)(NO(3))(2)]}(n) [M = Co (4), Zn (5), Co-Zn (6)], have been synthesized and characterized. The two conformations of the ligand, syn and anti, lead to one-dimensional (1D) cationic chains or two-dimensional (2D) neutral grids. Extrusion of the water molecules of the 1D compounds results in an irreversible transformation into the 2D compounds, which involves a change in conformation of the btix ligands and a rearrangement in the metal environment with cleavage and reformation of covalent bonds. This structural transformation has been followed by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements to monitor the minor modifications that the metal centers suffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号