首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于0.6μm BiCMOS工艺,设计了一个低功耗14位10MS/s流水线A/D转换器.采用了去除前端采样保持电路、共享相邻级间的运放、逐级递减和设计高性能低功耗运算放大器等一系列低功耗技术来降低ADC的功耗.为了减小前端采样保持电路去除后引入的孔径误差,采用一种简单的RC时间常数匹配方法.仿真结果表明,当采样频率为10MHz,输入信号为102.5kHz,电源电压为5V时,ADC的信噪失真比(SNDR)、无杂散谐波范围(SFDR)、有效位数(ENOB)和功耗分别为80.17dB、87.94dB、13.02位和55mW.  相似文献   

2.
基于电子不停车收费系统(ETC)接收机的要求,在TSMC018μm工艺下设计并实现一种8bit 32 MS/s流水线型模数转换器。通过详细理论分析确定设计参数和电路模型,通过运放共享以及带有增益自举的套筒式运算放大器和开关电容共模反馈电路降低电路的静态功耗,通过动态比较器以及静态锁存结构降低电路的动态功耗,使得功耗降低为原来的一半。测试结果显示ADC输入摆幅-0.4~0.4V下,功耗5.017mA,非使能状态下功耗0.567μA,信噪比(SNR)49.21dB,有效位(ENOB)7.77bit,无杂散噪声(SFDR)65.41dB,面积580μm×450μm。  相似文献   

3.
设计了一种14位100 MS/s的流水线模数转换器(ADC)。采样保持电路与第1级2.5位乘法数模转换器(MDAC1)共享运放,降低了功耗。提出了一种改进的跨导可变双输入开关运放,以满足采样保持和MDAC1对运放的不同要求,并消除记忆效应和级间串扰。ADC后级采用5级1.5位运放共享结构。基于0.18 μm CMOS工艺,ADC核心面积为1.4 mm2。后仿真结果表明,在1.8 V电源电压下,当采样速率为100 MS/s、输入信号频率为46 MHz时,ADC的信噪比(SNR)为82.6 dB,信噪失真比(SNDR)为78.7 dB,无杂散动态范围(SFDR)为84.1 dB,总谐波失真(THD)为-81.0 dB,有效位数(ENOB)达12.78位。ADC整体功耗为116 mW。  相似文献   

4.
在1.8V,0.18μm CMOS工艺下,实现了10位,50MS/s流水线操作A/D转换器的设计和测试.通过优化采样电容和运算跨导放大器(OTA)电流,并采用动态比较器,从而降低功耗;采用复位结构的采样/保持和余量增益电路消除OTA失调电压的影响;优化OTA的次极点,保证其工作稳定.测试结果表明:ADC在整个量化范围内无失码,功耗为57.6mW,失调电压为0.8mV,微分非线性为-0.6~0.7LSB.对5.1MHz的输入信号量化,可获得44.9dB的信号与噪声及谐波失真比.电路面积为0.52mm2.  相似文献   

5.
设计了一种12位100 MS/s流水线型模数转换器。采用3.5位/级的无采保前端和运放共享技术以降低功耗;采用首级多位数的结构以降低后级电路的输入参考噪声。采用一种改进型的双输入带电流开关的运放结构,以解决传统运放共享结构所引起的记忆效应和级间串扰问题。在TSMC 90 nm工艺下,采用Cadence Spectre进行仿真验证,当采样时钟频率为100 MS/s,输入信号频率为9.277 34 MHz时,信干噪比(SNDR)为71.58 dB,无杂散动态范围(SFDR)为86.32 dB,电路整体功耗为220.8 mW。  相似文献   

6.
陈珍海  袁俊  郭良权 《微电子学》2008,38(2):236-240
利用运放共享技术,设计了一种用于10位50 MS/s流水线ADC的增益D/A转换器(MDAC).采用SMIC 0.25 μm 1P5M标准数字CMOS工艺,整个MDAC模块的版图面积为0.064 mm2.仿真结果表明,在50 MHz采样率下、输入信号为2 MHz(1.5 V振幅)正弦波时,整个电路模块的功耗为7.12 mW.  相似文献   

7.
詹勇  石红  魏娟  周晓丹  郭亮 《微电子学》2018,48(2):151-155
设计并实现了一种14位50 MS/s流水线ADC。采用无采保放大器的前端电路和运放共享技术,在达到速度及精度要求的同时降低了功耗。该流水线ADC采用0.13 μm标准CMOS工艺实现,芯片尺寸为2.7 mm×2.1 mm。在电源电压为1.2 V、采样速率为50 MS/s、模拟输入信号频率为28 MHz的条件下进行测试。结果表明,该ADC的功耗为91.2 mW,SFDR为82.39 dBFS,SNR为72.45 dBFS,SNDR为71.13 dB,ENOB为11.52 bit,THD为-81.28 dBc,DNL在±1 LSB以内,INL在±3 LSB以内,品质因子FOM为0.62 pJ/step。  相似文献   

8.
一种57.6mW,10位,50MS/s流水线操作CMOS A/D转换器   总被引:6,自引:0,他引:6  
在1.8V,0.18μm CMOS工艺下,实现了10位,50MS/s流水线操作A/D转换器的设计和测试.通过优化采样电容和运算跨导放大器(OTA)电流,并采用动态比较器,从而降低功耗;采用复位结构的采样/保持和余量增益电路消除OTA失调电压的影响;优化OTA的次极点,保证其工作稳定.测试结果表明:ADC在整个量化范围内无失码,功耗为57.6mW,失调电压为0.8mV,微分非线性为-0.6~0.7LSB.对5.1MHz的输入信号量化,可获得44.9dB的信号与噪声及谐波失真比.电路面积为0.52mm2.  相似文献   

9.
介绍了一个面向3G/4G LTE通信及雷达等应用的12位200 MS/s的高速低功耗A/D转换器(ADC).采用交织运放共享技术,可节省功耗,同时减小不同通道之间的增益失配、失调失配和带宽失配,提高ADC的性能.为了提高ADC的高频性能并避免时钟采样偏差带来的两路通道失配问题,采用一个工作在200 MS/s采样频率的统一的采样保持电路.芯片采用HJTC0.18 μm 1P6M CMOS的工艺制造,核心电路面积为1.6×4 (mm2),电源电压2.0V.流片测试结果表明,在4.9 MHz的输入频率下,无杂散动态范围(SFDR)为83.1 dB,信号噪声失真比(SNDR)为59.6 dB,模拟核心电流为120mA,FOM1和FOM2值仅为0.08 pJ/step和1.25 pJ/step.  相似文献   

10.
介绍了一个10位30M采样率流水线A/D转换器,通过采用运放共享技术和动态比较器,大大降低了电路的功耗. 在采样保持电路中使用一种新颖的自举(bootstrap)开关,减小了失真,使得电路在输入信号频率很高时仍具有很好的动态性能. 还提出了一种新的偏置电路结构,为增益提高运放提供了一个稳定且精确的偏置,使得增益提高运放具有较大的电压摆幅. 在30MHz采样时钟,29MHz输入信号下测试,可以得到9.16bit有效位的输出,在输入信号为70MHz时,仍然有8.75bit有效位. 电路积分非线性的最大值为0.  相似文献   

11.
实现了一个10位精度,30MS/s,1.2V电源电压流水线A/D转换器,通过采用运放共享技术和动态比较器,大大降低了电路的功耗。为了在低电源电压下获得较大的摆幅,设计了一个采用新颖频率补偿方法的两级运放,并深入分析了该运放的频率特性。同时还采用了一个新的偏置电路给运放提供稳定且精确的偏置。在30MHz采样时钟,0.5MHz输入信号下测试,可以得到8.1bit有效位的输出,当输入频率上升到60MHz(四倍奈奎斯特频率)时,仍然有7.9bit有效位。电路积分非线性的最大值为1.98LSB,微分非线性的最大值为0.7LSB。电路采用0.13μmCMOS工艺流片验证,芯片面积为1.12mm2,功耗仅为14.4mW。  相似文献   

12.
采用TSMC 0.18μm 1P6M工艺设计了一个12位50 MS/s流水线A/D转换器(ADC)。为了减小失真和降低功耗,该ADC利用余量增益放大电路(MDAC)内建的采样保持功能,去掉了传统的前端采样保持电路;采用时间常数匹配技术,保证输入高频信号时,ADC依然能有较好的线性度;利用数字校正电路降低了ADC对比较器失调的敏感性。使用Cadence Spectre对电路进行仿真。结果表明,输入耐奎斯特频率的信号时,电路SNDR达到72.19 dB,SFDR达到88.23 dB。当输入频率为50 MHz的信号时,SFDR依然有80.51 dB。使用1.8 V电源电压供电,在50 MHz采样率下,ADC功耗为128 mW。  相似文献   

13.
设计了一个工作在3.0V的10位40MHz流水线A/D转换器,采用了时分复用运算放大器,低功耗的增益自举telescopic运放,低功耗动态比较器,器件尺寸逐级减小优化功耗.在40MHz的采样时钟,0.5MHz的输入信号的情况下测试,可获得8.1位有效精度,最大积分非线性为2.2LSB,最大微分非线性为0.85LSB,电路用0.25μm CMOS工艺实现,面积为1.24mm2,功耗仅为59mW,其中同时包括为A/D转换器提供基准电压和电流的一个带隙基准源和缓冲电路.  相似文献   

14.
介绍了一个10位100 MHz,1.8 V的流水线结构模/数转换器(ADC),该ADC运用相邻级运算放大器共享技术和逐级电容缩减技术,可以大大减小芯片的功耗和面积。电路采用级联1个高性能前置采样保持单元和4个运放共享的1.5位/级MDAC,并采用栅压自举开关和动态比较器来缩减功耗。结果显示,在输入频率达到奈奎斯特频率范围内,整个ADC的有效位数始终高于9位。电路使用TSMC 0.18μm 1P6 M CMOS工艺,在100 MHz的采样频率下,功耗仅为45 mW。  相似文献   

15.
沈易  刘术彬  朱樟明 《半导体学报》2016,37(6):065001-5
本文在0.18μm CMOS工艺下,实现了一款10位50MS/s两级逐次逼近流水线混合型模数转换器(pipeline SAR ADC)。其由基于逐次逼近的增益模数单元和逐次逼近ADC组成,并采用1位冗余位放宽了子模数转换器的比较误差。通过采用逐次逼近结构,增益减半MDAC技术,动态比较器及动态逐次逼近控制逻辑,降低了模数转换器的功耗和面积。流片测试结果表明,在1.8V电源电压,50MS/s采样速率下,信噪失真比(SFDR)和功耗分别为56.04dB和5mV。  相似文献   

16.
提出了一种应用于图像传感器的10位160 kS/s的循环型模数转换器(ADC)。采用1.5位的流水线ADC结构,经过10次循环后,得到10位数字码输出。采用输入端自级联结构的两级运算放大器,提高了运放的增益。采用运放共享技术,实现单转双电路与ADC运放共享,降低了面积和功耗,实现了电平平移。基于0.13 μm CMOS工艺,在3.3 V电源电压和160 kHz采样速率下对ADC进行仿真。后仿真结果表明,该ADC的有效位数为9.45位,SNR为59.1 dB,SFDR为61.26 dB,DNL为±0.625 LSB,INL为±1.5 LSB。  相似文献   

17.
设计了一个10位50 Msample/s流水线ADC IP核.采用SMIC 0.25 μm 1P5M数字CMOS工艺,通过使用运算放大器共享技术、电容逐级缩减技术和对单元电路的优化,使得整个IP核面积仅为0.24 mm2.仿真结果表明,在50 MHz采样率、输入信号为2.04 MHz正弦信号情况下,该ADC模块具有8.9 bit的有效分辨率,最大微分非线性为0.65 LSB,最大积分非线性为1.25 LSB,而整个模块的功耗仅为16.9 mW.  相似文献   

18.
提出了一种模拟域的前台校准技术,据此设计了一款12位精度的模数转换器(ADC)。芯片采用全定制叉指电容来实现电容阵列,并在TSMC 65nm工艺下进行了流片验证。芯片的内核面积仅为0.2 mm2,测试数据显示,在5kHz转换速率时信噪失真比(SNDR)为62dB,无杂散动态范围(SFDR)为76dB,在1.2V电源电压下功耗仅为112nW。  相似文献   

19.
基于0.18μm CMOS工艺设计一款10位逐次逼近型模数转换器(SAR ADC),采用了阻容混合型的数模转换器(DAC)以实现面积与性能上的折衷,高位采用温度码设计以提高DAC的线性度。采用了失调电压较小的静态比较器结构,通过在DAC和比较器之间加入了高增益的前置放大器来消除比较器失调电压对ADC性能所带来的影响。仿真结果表明:在电源电压为2.8 V、采样速率为116 k S/s、输入信号频率约为57 k Hz、满摆幅为0.8 V的情况下,ADC有效位数(ENOB)达9.99位,信噪失真比(SNDR)为61.9 d B,无杂散动态范围(SFDR)为75.57 d B,总功耗约为1 m W,面积为0.069 mm~2。  相似文献   

20.
王韧  刘敬波  秦玲  陈勇  赵建民 《微电子学》2006,36(5):651-654,658
设计了一种3.3 V 9位50 MS/s CMOS流水线A/D转换器。该A/D转换器电路采用1.5位/级,8级流水线结构。相邻级交替工作,各级产生的数据汇总至数字纠错电路,经数字纠错电路输出9位数字值。仿真结果表明,A/D转换器的输出有效位数(ENOB)为8.712位,信噪比(SNR)为54.624 dB,INL小于1 LSB,DNL小于0.6 LSB,芯片面积0.37 mm2,功耗仅为82 mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号