首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the investigation of the thermal stability of a series of new complexes with mixed ligands of the type M(dipy)(C3H3O2)2(H2O)y ((1) M: Mn, y=1; (2) M: Ni, y=2; (3) M: Cu, y=1; (4) M: Zn, y=2; dipy: 2,2’-dipyridine and C3H3O2 is acrylate anion). The thermal behaviour steps were investigated. The thermal transformations are complex processes according to TG and DTG curves including dehydration, oxidative condensation of acrylate and thermolysis processes. The final products of decomposition are the most stable metal oxides.  相似文献   

2.
This paper reports the investigation of the thermal stability of a series of new complexes with mixed ligands of the type [M(en)(C3H3O2)2nH2O ((1) M=Ni, n=2; (2) M=Cu, n=0; (3) M=Zn, n=2; en=ethylenediamine and (C3H3O2)=acrylate anion). The thermal behaviour steps were investigated in a nitrogen flow. The thermal transformations are complex processes according to TG and DTA curves including dehydration, ethylenediamine elimination as well as acrylate thermolysis. The final products of decomposition are the most stable metal oxides except for complex (2) that generates metallic copper.  相似文献   

3.
The present work provides data concerning thermal decomposition of 2,2′-dipyridyl(2-dipy) and 4,4′-dipyridyl(4-dipy) with rare-earth elements (Ln) based on literature and our own sustained studies which comprised about 100 complexes.
Zusammenfassung Ausgehend von Literaturangaben und unseren eigenen Untersuchungen von mehr als 100 Komplexen liefert vorliegende Arbeit Angaben zur thermischen Zersetzung von 2,2′-Dipyridyl(2-dipy) und 4,4′-Dipyridyl(4-dipy) mit Seltenerdenelementen (Ln).
  相似文献   

4.
Summary This paper reports the investigation of the thermal stability of three new complexes of Cr(III) with acrylate anion, [Cr2(C3H3O2)4(OH)2(H2O)4], [Cr3O(C3H3O2)6(C3H4O2)3](C3H3O2)×5H2O and [Cr2(C3H3O2)5(OH)] ×2H2O, respectively. This type of complexes is important in proper carbohydrate and lipid metabolism of mammals. The thermal decomposition steps were evidenced. The thermal transformations are complex processes according to TG and DTG curves including dehydration and oxidative degradation of acrylate ion processes. The final product of decomposition is the chromium(III) oxide.  相似文献   

5.
A series of new complexes with mixed ligands of the type [ML(C3H3O2)2nH2O (((1) M=Mn, n=1; (2) M=Co(II), n=2; (3) M=Ni(II), n=4; (4) M=Cu(II), n=1.5; (5) M=Zn(II), n=0; L=3-amino-1,2,4-triazole and (C3H3O2)=acrylate anion) were synthesized and characterised by chemical analysis and IR data. In all complexes the 3-amino-1,2,4-triazole acts as bridge while the acrylate acts as bidentate ligand except for complex (5) where it is found as unidentate. The thermal behaviour steps were investigated in nitrogen flow. The thermal transformations are complex processes according to TG and DTG curves including dehydration, acrylate ion and 3-amino-1,2,4-triazole degradation respectively. The final products of decomposition are the most stable metal oxides, except for complex (4) that leads to metallic copper.  相似文献   

6.
this paper deals with the first investigation concerning the thermal stability of two 1-(2-benzothiazolyl)-3-methyl-4-azo-pyrazil-5-one derivatives and their Cu(II) coordination compounds of type ((C4H9)4N)2[Cu(L)2]. The thermal decomposition steps were established. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary This paper reports the investigation of the thermal stability of a series of new complexes with mixed ligands of the type M(phen)(C3H3O2)2(H2O)y ((1) M=Mn, y=0; (2) M=Ni, y=2; (3) M=Cu, y=1; (4) M=Zn, y=2; phen=phenanthroline and C3H3O2 is acrylate anion). The thermal behaviour steps were investigated. The thermal transformations are complex processes according to TG and DTG curves including dehydration, oxidative condensation of acrylate and thermolysis processes. The final products of decomposition are the most stable metal oxides.  相似文献   

8.
The complexes of the type SnCl4(HL)·EtOH and SnCl2L2 (HL 1 : the Schiff base resulted in 1:1 condensation of isatin and aniline; HL 2 : the Schiff base resulted in 1:1 condensation of isatin and p-toluidine) have been synthesized and characterized. The thermal analysis of the new ligands and complexes has evidenced the thermal intervals of stability and also the thermal effects that accompany them. The Schiff bases thermal transformations consist in phase transitions, Carom–N bond cleavage and thermolysis processes. The different nature of the complexes generates their different thermal behaviour. The complexes lead in three steps to SnO2 and in all cases the Schiff bases degradation generates a pyrrolidone-coordinated derivative. As for the SnCl4(HL)·EtOH complexes, the SnCl4 formed during the last step is involved in two competitive processes, one consists in their volatilisation while the other one leads to SnO2. As result the SnO2 residue is smaller than the theoretically expected.  相似文献   

9.
The thermal properties of some organotin complexes of general structure (4-ZC6H4)2SnCl2.L2 (Z=Me, CF3, F, Cl, OMe and H; L2 = 2,2′ -bipyridyl and 4,4′ -dimethyl-2,2′ -bipyridyl) are reported. The thermal data obtained by Differential Thermal Analysis (DTA) for these complexes is reported. Thermal decomposition experiments for some of the complexes are described and indicate a disproportionation of the complexes into the aryltin trichloride complex and the triaryltin chloride. The controlled decomposition provides a possible alternative preparative route to some aryltin trichloride complexes.  相似文献   

10.
New zinc acetate based complex compounds (of general formula Zn(CH3COO)2·1?2L·nH2O) containing one or two molecules of urea, thiourea, coffeine and phenazone were prepared namely: Zn(CH3COO)2·2.5H2O, Zn(CH3COO)2·2u·0.5H2O, Zn(CH3COO)2·tu·0.5H2O, Zn(CH3COO)2·2tu, Zn(CH3COO)2·cof·2.5H2O, Zn(CH3COO)2·2cof·3.5H2O, Zn(CH3COO)2·2phen·1.5H2O. The compounds were characterized by IR spectroscopy, chemical analysis and thermal analysis. Thermal analysis showed that no changes in crystallographic modifications of the compounds take place during (heating in nitrogen before) the thermal decompositions. The temperature interval of the stability of the prepared compounds were determined. It was found that the thermal decomposition of hydrated compounds starts by the release of water molecules. During the thermal decomposition of anhydrous compounds in nitrogen the release of organic ligands take place followed by the decomposition of the acetate anion. Zinc oxide and metallic zinc were found as final products of the thermal decomposition of the zinc acetate based complex compounds studied. Carbon dioxide and acetone were detected in the gaseous products of the decomposition of the compounds if ZnO is formed. Carbon monoxide and acetaldehyde were detected in the gaseous products of the decomposition, if metallic Zn is formed. It is supposed that ZnO and Zn resulting from Zn acetate complex compounds here studied, possess different degree of structural disorder. Annealing takes place by further heating above 600°C.  相似文献   

11.
New mixed-ligand complexes of general formulae Mn(4-bpy)(CCl3COO)2⋅H2O, Ni(4-bpy)2(CCl3COO)2⋅2H2O and Zn(4-bpy)2(CCl3COO)2⋅2H2O (where 4-bpy=4,4’-bipyridine) were obtained and characterized. The IR spectra, conductivity measurements and other physical properties of these compounds were discussed. The central atoms M(II) form coordinate bonds with title ligands. The thermal behaviour of the synthesized complexes was studied in air. During heating the complexes decompose via different intermediate products to Mn3O4, NiO and ZnO; partial volatilization of ZnCl2was observed. A coupled TG-MS system was used to the analysis of the principal volatile thermal decomposition products of Mn(II) and Ni(II) complexes. The principal volatile mass fragments correspond to: H2O+, OH+, CO+ 2, HCl+, Cl+ 2, CCl+ and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
《Thermochimica Acta》2001,370(1-2):29-36
The thermal properties of four copper(II) complexes with N,N′,N″,N-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and several bidentate ligands N,S (thiosemicarbazide and thiourea) or N,O donors (semicarbazide and urea), of the general formula [Cu2(X)tpmc](ClO4)4, have been investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). The thermal stability order can be recognized for the examined complexes, depending on coordinated bidentate bridging N,S or N,O ligand. Kinetic data demonstrated first-order thermal decomposition. A plausible mechanism has been proposed which explains the major products of the degradation.  相似文献   

13.
The stoichiometry of thermal decomposition of the complexes Ni(NCS)2(fpy)4 (I), Ni(NCS)2(bfpy)4 (II) and Ni(NCS)2(CF3Phfpy)4 (III) (where fpy=furopyridine, bfpy=benzo-[2,3]furo[3,2-c]pyridine, CF3Phfpy=2-(3-fluoromethylphenyl) furo[3,2-c]pyridine) have been investigated in nitrogen atmosphere from room temperature to 500°C by means of TG and DTG. The results revealed that release of the heterocyclic ligands occurs in two steps. IR data suggested that fpy, bfpy and CF3Phfpy ligands were coordinated to Ni(II) through the N atom of the respective heterocyclic rings and same is the case with the anionic NCS group.  相似文献   

14.
Summary This paper reports the investigation of the thermal stability of two new complexes with allylacetoacetate anion, Cu(C7H9O3)2 (1) and Ni(C7H9O3)2(OH2)2 (2), respectively. The bonding and stereochemistry of the complexes have been characterized by IR, electronic and EPR spectra. The main decomposition steps were evidenced. The two complexes exhibit a different thermal behaviour. Thus, the copper complex suffers an oxidative degradation of allylacetoacetate ligand leading to copper carbonate, which is decomposed to copper oxide. The Ni(II) complex lose the water molecules first and then the organic ligand decomposition occurs. An intermediary malonaldehyde complex seems to be obtained. Complex (1) presents in vitro antimicrobial activity.  相似文献   

15.
Zn(II) complexes of some cephalosporin antibiotics namely cephalexin, cephapirin, cefamandole, cefuroxime, cefotaxime and ceftazidime were synthesised and characterized. The stoichiometrics and the mode of bonding of the complexes were deduced from their elemental analysis, IR and electronic spectroscopies. Thermal stabilities and the photochemical behaviour of the complexes were studied. The Zn(II) complex of cephalexin exhibited a high light sensitivity. The remaining Zn(II) complexes behaved similarly to their free antibiotics, upon irradiation.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
Thermogravimetry technique is useful to determine the thermal stability of vegetable oils. In this paper some vegetable oils obtained from brazilian Cerrado native plants were studied based on their high oleic acid content. Amburana, baru and pequi pulp oils presented higher yield of extraction compared to soybean oil. The thermal stability of oils in nitrogen was very close hence their fatty acid composition was very similar. Amburana and baru oils have major amount of unsaturated fatty acids, especially linoleic acid and pequi pulp oil has the highest short chain fatty acid content which can explain its lowest thermal stability in synthetic air.  相似文献   

17.
Thermal decompositions of zinc(II) chloroacetate and its complexes with nicotinamide and caffeine were studied by means of TG/DTG, DTA, IR and mass spectroscopy. Thermal analysis showed that presence of the halogen significantly influenced the thermal decomposition. Decompositions may be characterized as two step reactions (release of nicotinamide or caffeine followed by pyrolysis of the carboxylate anion). Zinc chloride, CO, CO2, CH2O, ClCH2CHO were found in gaseous products of the thermal decomposition.  相似文献   

18.
New mixed-ligands complexes with empirical formulae: M(2,4′-bpy)2L2·H2O (M(II)Zn, Cd), Zn(2-bpy)3L2·4H2O, Cd(2-bpy)2L2·3H2O, M(phen)L2·2H2O (where M(II)=Mn, Ni, Zn, Cd; 2,4′-bpy=2,4′-bipyridine, 2-bpy=2,2′-bipyridine, phen=1,10-phenanthroline, L=HCOO) were prepared in pure solid state. They were characterized by chemical, thermal and X-ray powder diffraction analysis, IR spectroscopy, molar conductance in MeOH, DMF and DMSO. Examinations of OCO absorption bands suggest versatile coordination behaviour of obtained complexes. The 2,4′-bpy acts as monodentate ligand; 2-bpy and phen as chelating ligands. Thermal studies were performed in static air atmosphere. When the temperature raised the dehydration processes started. The final decomposition products, namely MO (Ni, Zn, Cd) and Mn3O4, were identified by X-ray diffraction.  相似文献   

19.
New mixed ligand complexes of the following stoichiometric formulae: M(2-bpy)2(RCOO)2·nH2O, M(4-bpy)(RCOO)2·H2O and M(2,4’-bpy)2(RCOO)2·H2O (where M(II)=Zn, Cd; 2-bpy=2,2’-bipyridine, 4-bpy=4,4′-bipyridine, 2,4′-bpy=2,4′-bipyridine; R=C2H5; n=2 or 4) were prepared in pure solid-state. These complexes were characterized by chemical and elemental analysis, IR and conductivity studies. Thermal behaviour of compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The final products of pyrolysis of Cd(II) and Zn(II) compounds were metal oxides MO. A coupled TG/MS system was used to analyse of principal volatile products of thermal decomposition or fragmentation of Zn(4-bpy)(RCOO)2·H2O under dynamic air and argon atmosphere. The principal species correspond to: C+, CH+, CH3 +, C2H2 +, HCN+, C2H5 + or CHO+, CH2O+ or NO+, CO2 +, 13C16O2 + and 12C16O18O+ and others; additionally CO+ in argon atmosphere.  相似文献   

20.
This paper presents the synthesis, physico‐chemical and biological properties of four new coordination compounds with mixed ligands: acrylate ion (acr) and benzimidazole/benzimidazole derivatives with the general formula [Co(L) 2 (acr) 2 nH 2 O [ (1) L: benzimidazole (HBzIm), n: 0.5; (2) L: 2‐methylbenzimidazole (2‐MeBzIm), n: 0.5; (3) L: 5‐methylbenzimidazole (5‐MeBzIm), n: 0; (4) L: 5,6‐dimethylbenzimidazole (5,6‐Me2BzIm), n: 0]. Their chemical formulae were achieved correlating the chemical analysis with mass spectrometry data, the ligands coordination modes were assigned by Fourier transform‐infrared measurements, and the trigonal bipyramidal geometry of cobalt ion in complexes was assigned by data correlation of UV–Vis‐NIR spectra and magnetic moments measurements. Single‐crystal X‐ray diffraction reveals a mononuclear structure with a pentacoordinated cobalt (II) ion, connected to two acrylato coordinated in different modes and two unidentate 5,6‐dimethylbenzimidazole ligands for compound (4) . The biological tests were performed against several microbial strains, the cytotoxicity was evaluated on HCT8 cellular lines and the cell cycle analysis was performed on HT29 cellular lines. Microbiological assays indicated that Co (II) complexes present a very good to good activity against Candida albicans 1760, Enterococcus faecium E5, Bacillus subtilis ATCC 6683 and Escherichia coli ATCC 25922. Predictive pharmacokinetic (ADME), toxicity and drug‐likeness profiles were evaluated for Co (II) complexes. Our results highlight that Co (II) complexes depicted in the present study are suitable to be used as efficient pharmacological agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号