首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Physics letters. A》2006,359(6):712-717
In the theory of Bose-condensed systems, there exists the well known problem, the Hohenberg–Martin dilemma of conserving versus gapless approximations. This dilemma is analysed and it is shown that it arises because of the internal inconsistency of the standard grand ensemble, as applied to Bose systems with broken global gauge symmetry. A solution of the problem is proposed, based on the notion of representative statistical ensembles, taking into account all constraints imposed on the system. A general approach for constructing representative ensembles is formulated. Applying a representative ensemble to Bose-condensed systems results in a completely self-consistent theory, both conserving and gapless in any approximation.  相似文献   

2.
Based on the energy functional and variational method, we present a new method to investigate the ground state properties for a weakly interacting Bose-condensed gas in an anisotropic harmonic trap at zero temperature. With this method we are able to find the analytic expression of the ground-state wavefunction and to explore the relevant quantities, such as energy, chemical potential, and the aspect ratio of the velocity distribution. These results agree well with previous ground state numerical solutions of the Gross-Pitaevskii equation given by Dalfovo et al. [Phys. Rev. A 53 (1996) 2477] This new method is simple compared to other methods used to solve numerically the Gross-Pitaevskii equation, and one can obtain analytic and reliable results.  相似文献   

3.
By obtaining Kubo formula type and using nonequilibrium Green’s functions, we calculate the shear viscosity of a trapped Bose-condensed gas below and above the Bose-Einstein condensation temperature (TBEC). The contributions of the interactions between condensate and noncondensate atoms and between noncondensate atoms take into account to the viscous relaxation time, by evaluating second order self-energies in Beliaev approximation.  相似文献   

4.
G. Mazzarella 《Physics letters. A》2009,373(48):4434-4437
We study triaxial bright solitons made of attractive Bose-condensed atoms characterized by the absence of confinement in the longitudinal axial direction but trapped by an anisotropic harmonic potential in the transverse plane. By numerically solving the three-dimensional Gross-Pitaevskii equation we investigate the effect of the transverse trap anisotropy on the critical interaction strength above which there is the collapse of the condensate. The comparison with previous predictions [A. Gammal, L. Tomio, T. Frederico, Phys. Rev. A 66 (2002) 043619] shows significant differences for large anisotropies.  相似文献   

5.
We study the thermodynamics of the Bose-condensed atomic hydrogen confined in the Ioffe-Pritchard potential. Such a trapping potential, that models the magnetic trap used in recent experiments with hydrogen, is anharmonic and strongly anisotropic. We calculate the ground-state properties, the condensed and non-condensed fraction and the Bose-Einstein transition temperature. The thermodynamics of the system is strongly affected by the anharmonicity of this external trap. Finally, we consider the possibility to detect Josephson-like currents by creating a double-well barrier with a laser beam. Received 15 February 2000  相似文献   

6.
In this article, we present a set of hierarchy Bloch equations for the reduced density operators in either canonical or grand canonical ensembles in the occupation number representation. They provide a convenient tool for studying the equilibrium quantum statistical mechanics for some model systems. As an example of their applications, we solve the equations for the model system with a pairing Hamiltonian. With the aid of its symplectic group symmetry, we obtain the statistical reduced density matrices with different orders. As a special instance for the solutions, we also get the reduced density matrices of the ground state for a superconductor.  相似文献   

7.
8.
Shina Tan 《Annals of Physics》2008,323(12):2987-2990
For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations.  相似文献   

9.
Z. Akdeniz 《Physics letters. A》2009,373(29):2471-2475
We examine theoretically the dynamical response of a homogeneous mixture of condensed bosons and spin-polarized fermions confined inside a quasi-two-dimensional or a quasi-one-dimensional geometry, considering quasi-three-dimensional boson-boson and boson-fermion interactions. We focus on the effects of low dimensions on the density response functions in the crossover from weak to strong boson-fermion coupling up to the onset of instability. The dynamical condition is found to be in agreement with a linear stability analysis at equilibrium.  相似文献   

10.
金晶  唐翌 《中国物理快报》2007,24(9):2501-2504
The diffusion Monte Carlo method is applied to study the ground-state properties of charged bosons in one dimension confined in a harmonic double-well trap. The particles interact repulsively through a Coulombic 1/r potential. Numerical results show that the well separation has significant influence on the ground-state properties of the system. When the interaction of the system is weak, ground-state energy decreases with the increasing well separation and has a minimal value. If the well separation increases continually~ the ground-state energy increases and approaches to a constant gradually. This effect will be abatable in the strong interacting system. In addition, by calculating the density of the systems for different interaction strengths with various well separations, we find that the density increases abnormally when the well separation is large at the centre of the system.  相似文献   

11.
We prove that the ground state momentum distribution of a one-dimensional system of impenetrable bosons exhibits a k−4 tail for any confining potential. We also derive an expression for easily computing the asymptotic occupation numbers and verify our results with an exact numerical approach.  相似文献   

12.
We investigate the Landau damping of collective modes in an anisotropic Bose Einstein condensate (BEC), Based on divergence-free analytical solutions for the ground state wavefunction of the condensate and all eigenvalues and eigenfunctions for thermal excited quasiparticles, we make a detailed analytical calculation on coupling matrix elements. We evaluate the Landau damping of a quadrupole collective mode in the BEC with a disc-shaped trap and discuss its dependence on temperature and particle number of the system.  相似文献   

13.
We present an experimental study on the continuous atom laser. The experiments show that a high field seeking state atom laser with stable flux can be formed by increasing the strength of outcoupling before large density fluctuations appear. It is easy to obtain a long length or high speed output with this kind of atom laser.  相似文献   

14.
We study the dynamics of a trapped Bose–Einstein condensate with a multiply-quantized vortex, and investigate the roles of the fluctuations in the dynamical evolution of the system. Using the perturbation theory of the external potential, and assuming the situation of the small coupling constant of self-interaction, we analytically solve the time-dependent Gross–Pitaevskii equation. We introduce the zero mode and its adjoint mode of the Bogoliubov–de Gennes equations. Those modes are known to be essential for the completeness condition. We confirm how the complex eigenvalues induce the vortex splitting. It is shown that the physical role of the adjoint zero mode is to ensure the conservation of the total condensate number. The contribution of the adjoint mode is exponentially enhanced in synchronism with the exponential growth of the complex mode, and is essential in the vortex splitting.  相似文献   

15.
The purpose of this paper is to explore the density-density correlation for the ultracold atomic gases released from a series of attractive potentials. It is found that the interference fringes in the density-density correlation reflect in a unique way the arrangement of these attractive potentials, which is similar to the Hanbury-Brown-Twiss stellar interferometer. To clearly show this, after a general theoretical study, we study in detail the situations for a series of attractive potentials arranged along the circumferences of an ellipse and a circle. An experimental scheme to observe this theoretical predication is discussed.  相似文献   

16.
We present a semiclassical three-fluid model for a Bose-condensed mixture of interacting Bose and Fermi gases confined in harmonic traps at finite temperature. The model is used to characterize the experimentally relevant behaviour of the equilibrium density profile of the fermions with varying composition and temperature across the onset of degeneracy, for coupling strengths relevant to a mixture of 39K and 40K atoms. Received: 18 May 1998 / Revised: 24 August 1998 / Accepted: 31 August 1998  相似文献   

17.
We propose an exactly solvable method to study the coherent two-colour photoassociation of an atomic Bose- Einstein condensate, by linearizing the bilinear atom-molecule coupling, which allows us to conveniently probe the quantum dynamics and statistics of the system. By preparing different initial states of the atomic condensate, we can observe very different quantum statistical properties of the system by exactly calculating the quadrature- squeezed and mode-correlated functions.  相似文献   

18.
Qiongtao Xie 《Physics letters. A》2009,373(17):1501-1505
We investigate the effect of an external periodic driving field on the self-trapping of two weakly coupled Bose-Einstein condensates with dissipation. It is shown that the macroscopic self-trapping can be stabilized against dissipation by a high frequency periodic driving field. The parameter ranges for stabilizing self-trapping are found analytically and confirmed numerically.  相似文献   

19.
S. Diehl  C. Wetterich   《Nuclear Physics B》2007,770(3):206-272
We develop a functional integral formalism for ultracold gases of fermionic atoms. It describes the BEC–BCS crossover and involves both atom and molecule fields. Beyond mean field theory we include the fluctuations of the molecule field by the solution of gap equations. In the BEC limit, we find that the low temperature behavior is described by a Bogoliubov theory for bosons. For a narrow Feshbach resonance these bosons can be associated with microscopic molecules. In contrast, for a broad resonance the interaction between the atoms is approximately pointlike and microscopic molecules are irrelevant. The bosons represent now correlated atom pairs or composite “dressed molecules”. The low temperature results agree with quantum Monte Carlo simulations. Our formalism can treat with general inhomogeneous situations in a trap. For not too strong inhomogeneities the detailed properties of the trap are not needed for the computation of the fluctuation effects—they enter only in the solutions of the field equations.  相似文献   

20.
By using a variational approach in combination with the adiabatic approximation we derive a new effective 1D equation of motion for the axial dynamics of elongated condensates. For condensates with vorticity ∣q∣ = 0 or 1, this equation coincides with our previous proposal [A. Muñoz Mateo, V. Delgado, Phys. Rev. A 77 (2008) 013617]. We also rederive the nonpolynomial Schrödinger equation (NPSE) in terms of the adiabatic approximation. This provides a unified treatment for obtaining the different effective equations and allows appreciating clearly the differences and similarities between the various proposals. We also obtain an expression for the axial healing length of cigar-shaped condensates and show that, in the local density approximation and in units of the axial oscillator length, it coincides with the inverse of the condensate axial half-length. From this result it immediately follows the necessary condition for the validity of the local density approximation. Finally, we obtain analytical formulas that give the frequency of the axial breathing mode with accuracy better than 1%. These formulas can be relevant from an experimental point of view since they can be expressed in terms only of the axial half-length and remain valid in the crossover between the Thomas-Fermi and the quasi-1D mean-field regimes. We have corroborated the validity of our results by numerically solving the full 3D Gross-Pitaevskii equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号