首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the N → M probabilistically perfect quantum cloning machine that perfectly produces M faithful copies from N identical input states, where the input states are selected, with prior probabilities η1and η2 = 1 − η1, from a given set of the two linearly independent states |ψ1⊗ N = (cosθ|0〉 + sinθ|1〉)⊗ N and |ψ2⊗ N = (sinθ|0〉 + cosθ|1〉)⊗ N (θ∈(0,π/2)). We derive the optimal distribution of the success probabilities. When M approaches infinite, the probabilistically perfect quantum cloning can be regarded as a kind of the unambiguous state discrimination, and theoretically provides the upper bound of the unambiguous state discrimination. By using the optimal distribution of the success probabilities of the optimal asymmetric 1 → M probabilistically perfect quantum cloning, we can derive the maximum average success probability of the unambiguous discrimination of two nonorthogonal quantum states |ψ1〉and|ψ2〉. As an example, we give the explicit transformation of the optimal symmetric 1 → M probabilistically perfect quantum cloning to copy the two input states |ψ1〉 and |ψ2〉.  相似文献   

2.
We present a unifying framework to study physical systems which exhibit topological quantum order (TQO). The major guiding principle behind our approach is that of symmetries and entanglement. These symmetries may be actual symmetries of the Hamiltonian characterizing the system, or emergent symmetries. To this end, we introduce the concept of low-dimensional Gauge-like symmetries (GLSs), and the physical conservation laws (including topological terms, fractionalization, and the absence of quasi-particle excitations) which emerge from them. We prove then sufficient conditions for TQO at both zero and finite temperatures. The physical engine for TQO are topological defects associated with the restoration of GLSs. These defects propagate freely through the system and enforce TQO. Our results are strongest for gapped systems with continuous GLSs. At zero temperature, selection rules associated with the GLSs enable us to systematically construct general states with TQO; these selection rules do not rely on the existence of a finite gap between the ground states to all other excited states. Indices associated with these symmetries correspond to different topological sectors. All currently known examples of TQO display GLSs. Other systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin-exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. The symmetry based framework discussed herein allows us to go beyond standard topological field theories and systematically engineer new physical models with finite temperature TQO (both Abelian and non-Abelian). Furthermore, we analyze the insufficiency of entanglement entropy (we introduce SU(N) Klein models on small world networks to make the argument even sharper), spectral structures, maximal string correlators, and fractionalization in establishing TQO. We show that Kitaev’s Toric code model and Wen’s plaquette model are equivalent and reduce, by a duality mapping, to an Ising chain, demonstrating that despite the spectral gap in these systems the toric operator expectation values may vanish once thermal fluctuations are present. This illustrates the fact that the quantum states themselves in a particular (operator language) representation encode TQO and that the duality mappings, being non-local in the original representation, disentangle the order. We present a general algorithm for the construction of long-range string and brane orders in general systems with entangled ground states; this algorithm relies on general ground states selection rules and becomes of the broadest applicability in gapped systems in arbitrary dimensions. We exactly recast some known non-local string correlators in terms of local correlation functions. We discuss relations to problems in graph theory.  相似文献   

3.
We present explicit wavefunctions for quasi-hole excitations over a variety of non-abelian quantum Hall states: the Read-Rezayi states with k ? 3 clustering properties and a paired spin-singlet quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the quasi-hole wavefunctions. We establish that the braid properties for the paired spin-singlet state are those of ‘Fibonacci anyons’, and thus suitable for universal quantum computation. Our derivations in this paper rely on explicit computations in the parafermionic conformal field theories that underly these particular quantum Hall states.  相似文献   

4.
We construct the explicit formulation of the probabilistically perfect quantum cloning machine that perfectly duplicates the input states chosen from the special set consisting of the linearly independent and nonorthogonal quantum states with 〈φiφj〉 = r ∈ (0, 1)(i ≠ j). The success probabilities of cloning the input states are equal and maximal. As two examples, we present the explicit transformations of the optimal 1 → 2 probabilistically perfect quantum cloning of the real states in 2 and 3 dimensions. The success probabilities of each of two cloning machines are equal and maximal.  相似文献   

5.
This work discusses the entanglement and quantum polarization of superpositions of two-mode coherent states of the types |ψ1〉 = N1(|α, β〉 + |β, α〉) and |ψ2〉 = N2(|−α, −α〉 + |α, α〉). We use the concurrence to measure their entanglements and the quantum Stokes parameters and the Q function in order to analyze their polarization and degree of polarization.  相似文献   

6.
运用负值量子条件熵研究了双量子系统一类混合态的纠缠量度.给出了负值量子条件作为条件熵纠缠度的定义,证明了条件熵纠缠满足作为2×2系统一类混合纠缠态量度的四个基本条件.当双量子系统处于纯态时,条件熵纠缠度即为部分熵纠缠度.应用条件熵纠缠度研究了真空腔场中两全同二能级原子之间纯态和一类混合态纠缠的时间演化,比较了相同条件下两全同原子系统concurrence纠缠度的时间演化.结果表明,两纠缠度演化规律完全一致,验证了负值量子条件熵可以作为双量子系统纯态和一类混合态的纠缠量度. 关键词: 双量子系统 负值量子条件熵 条件熵纠缠度 混合态纠缠度  相似文献   

7.
The pure rotational spectra of the v11 = 1 and v14 = 1 vibrational states of the main isotopic species of methyldiacetylene have been recorded and assigned in the 80-400 GHz frequency range, spanning the quantum numbers 19 ? J ? 95 and 0 ? K ? 15. The present study allows us to provide accurate rotational, centrifugal distortion and vibration-rotation interaction constants. The experimental investigation has been strongly supported by quantum-chemical computations at the second-order Møller-Plesset theory (MP2) in conjunction with a triple-zeta quality basis set.  相似文献   

8.
We calculate a topological invariant, whose value would coincide with the Chern number in the case of integer quantum Hall effect, for fractional quantum Hall states. In the case of Abelian fractional quantum Hall states, this invariant is shown to be equal to the trace of the K-matrix. In the case of non-Abelian fractional quantum Hall states, this invariant can be calculated on a case by case basis from the conformal field theory describing these states. This invariant can be used, for example, to distinguish between different fractional Hall states numerically even though, as a single number, it cannot uniquely label distinct states.  相似文献   

9.
In this Letter, some relations between the topological parameter d   and concurrences of the projective entangled states have been presented. It is shown that for the case with d=nd=n, all the projective entangled states of two n  -dimensional quantum systems are the maximally entangled states (i.e. C=1C=1). And for another case with d≠ndn, C   both approach 0 when d→+∞d+ for n=2n=2 and 3. Then we study the thermal entanglement and the entanglement sudden death (ESD) for a kind of Yang–Baxter Hamiltonian. It is found that the parameter d   influences not only the critical temperature TcTc but also the maximum entanglement value that the system can arrive at. And we also find that the parameter d has a great influence on the ESD.  相似文献   

10.
万歆  王正汉  杨昆 《物理》2013,42(08):558-566
分数量子霍尔效应系统是奇异的量子液体,其中的准粒子激发可以带分数电荷,甚至具有非阿贝尔的统计性质。理论研究表明,这些准粒子可以用来实现在硬件上可容错的量子计算,即拓扑量子计算。文章在介绍分数量子霍尔效应及其在拓扑量子计算中的潜在应用基础上,重点回顾了近五年来对填充因子为5/2的分数量子霍尔态中非阿贝尔准粒子的实验探测和部分相关理论诠释。  相似文献   

11.
With the recent observation of graphene-like Landau levels at the surface of topological insulators, the possibility of fractional quantum Hall effect, which is a fundamental signature of strong correlations, has become of interest. Some experiments have reported intra-Landau level structure that is suggestive of fractional quantum Hall effect. This paper discusses the feasibility of fractional quantum Hall effect from a theoretical perspective, and argues that while this effect should occur, ideally, in the n=0 and |n|=1 Landau levels, it is ruled out in higher |n| Landau levels. Unlike graphene, the fractional quantum Hall effect in topological insulators is predicted to show an interesting asymmetry between n=1 and n=−1 Landau levels due to spin-orbit coupling.  相似文献   

12.
We study the entropy of chiral 2+01-dimensional topological phases, where there are both gapped bulk excitations and gapless edge modes. We show how the entanglement entropy of both types of excitations can be encoded in a single partition function. This partition function is holographic because it can be expressed entirely in terms of the conformal field theory describing the edge modes. We give a general expression for the holographic partition function, and discuss several examples in depth, including abelian and non-abelian fractional quantum Hall states, and $p+ip$ superconductors. We extend these results to include a point contact allowing tunneling between two points on the edge, which causes thermodynamic entropy associated with the point contact to be lost with decreasing temperature. Such a perturbation effectively breaks the system in two, and we can identify the thermodynamic entropy loss with the loss of the edge entanglement entropy. From these results, we obtain a simple interpretation of the non-integer ‘ground state degeneracy’ which is obtained in 1+1-dimensional quantum impurity problems: its logarithm is a 2+1-dimensional topological entanglement entropy.  相似文献   

13.
The radiative quantum efficiencies η of the CdSe/ZnS core-shell nanoparticles embedded into polymethyl methacrylate (PMMA) and suspended in three different solvents: chloroform (CHCl3), toluene (C6H5CH3) and tetrahydrofuran (C4H8O) were measured using thermal lens (TL) technique. The mode-mismatched pump-probe TL measurements were accomplished in function of the CdSe/ZnS quantum-dot concentration (12-60 mg/ml) at λe = 594 nm (pump) and λp = 632.8 nm (probe). The values obtained for η were higher for CdSe/ZnS nanoparticles suspended in tetrahydrofuran and chloroform, as compared to the values for toluene. Thermal diffusivity (D) and the absolute nonradiative quantum efficiency (φ) were determined.  相似文献   

14.
The 2 + 1 dimensional lattice models of Levin and Wen (2005) [1] provide the most general known microscopic construction of topological phases of matter. Based heavily on the mathematical structure of category theory, many of the special properties of these models are not obvious. In the current paper, we present a geometrical space-time picture of the partition function of the Levin-Wen models which can be described as doubles (two copies with opposite chiralities) of underlying anyon theories. Our space-time picture describes the partition function as a knot invariant of a complicated link, where both the lattice variables of the microscopic Levin-Wen model and the terms of the Hamiltonian are represented as labeled strings of this link. This complicated link, previously studied in the mathematical literature, and known as Chain-Mail, can be related directly to known topological invariants of 3-manifolds such as the so-called Turaev-Viro invariant and the Witten-Reshitikhin-Turaev invariant. We further consider quasi-particle excitations of the Levin-Wen models and we see how they can be understood by adding additional strings to the Chain-Mail link representing quasi-particle world-lines. Our construction gives particularly important new insight into how a doubled theory arises from these microscopic models.  相似文献   

15.
Jinwu Ye 《Annals of Physics》2008,323(3):580-630
We use both Mutual Composite Fermion (MCF) and Composite Boson (CB) approach to study balanced and imbalanced Bi-layer Quantum Hall systems (BLQH) and make critical comparisons between the two approaches. We find the CB approach is superior to the MCF approach in studying ground states with different kinds of broken symmetries. In the phase representation of the CB theory, we first study the Excitonic superfluid (ESF) state. The theory puts spin and charge degree freedoms in the same footing, explicitly bring out the spin-charge connection and classify all the possible excitations in a systematic way. Then in the dual density representation of the CB theory, we study possible intermediate phases as the distance increases. We propose there are two critical distances dc1 < dc2 and three phases as the distance increases. When 0 < d < dc1, the system is in the ESF state which breaks the internal U(1) symmetry, when dc1 < d < dc2, the system is in an pseudo-spin density wave (PSDW) state which breaks the translational symmetry, there is a first-order transition at dc1 driven by the collapsing of magneto-roton minimum at a finite wavevector in the pseudo-spin channel. When dc2 < d < ∞, the system becomes two weakly coupled ν = 1/2 Composite Fermion Fermi Liquid (FL) state. There is also a first-order transition at d = dc2. We construct a quantum Ginzburg Landau action to describe the transition from ESF to PSDW which break the two completely different symmetries. By using the QGL action, we explicitly show that the PSDW takes a square lattice and analyze in detail the properties of the PSDW at zero and finite temperature. We also suggest that the correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature-dependent drag consistent with the experimental data. Then we study the effects of imbalance on both ESF and PSDW. In the ESF side, the system supports continuously changing fractional charges as the imbalance changes. In the PSDW side, there are two quantum phase transitions from the commensurate excitonic solid to an incommensurate excitonic solid and then to the excitonic superfluid state. We also comment on the effects of disorders and compare our results with the previous work. The very rich and interesting phases and phase transitions in the pseudo-spin channel in the BLQH is quite similar to those in 4He system with the distance playing the role of the pressure. A BLQH system in a periodic potential is also discussed. The Quantum Hall state to Wigner crystal transition in single layer Quantum Hall system is studied.  相似文献   

16.
We propose a pseudo-potential Hamiltonian for the Zhang-Hu’s generalized fractional quantum Hall states to be the exact and unique ground states. Analogously to Laughlin’s quasi-hole (quasi-particle), the excitations in the generalized fractional quantum Hall states are extended objects. They are vortex-like excitations with fractional charges +(−)1/m3 in the total configuration space CP3. The density correlation function of the Zhang-Hu states indicates that they are incompressible liquid.  相似文献   

17.
18.
Using exact diagonalization techniques, the low-lying states of an exciton, and the linear and nonlinear optical absorptions in a disc-like quantum dot are theoretically studied. The numerical results for the typical GaAs material show the so-called quantum size effect. Also, our study is restricted on the transition between the S state (L = 0) and the P state (L = 1). The optical absorption coefficients are greatly enhanced because of the induced size confinement. Meantime, we find that the total optical absorption coefficient is about two times bigger than that obtained by without considering exciton effects. Additionally, the optical absorption saturation intensity can be controlled by the incident optical intensity I.  相似文献   

19.
We study the dynamical generation of entanglement for a very simple system: a pair of interacting spins, s1 and s2, in a constant magnetic field. Two different situations are considered: (a) s1 → ∞, s2 = 1/2 and (b) s1 = s2 → ∞, corresponding, respectively, to a quantum degree of freedom coupled to a semiclassical one (a qubit in contact with an environment) and a fully semiclassical system, which in this case displays chaotic behavior. Relations between quantum entanglement and classical dynamics are investigated.  相似文献   

20.
The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechanical theories gives rise to the notion of an effective light cone with exponentially decaying tails. We discuss several consequences of this result in the context of quantum information theory. First, we show that the information that leaks out to spacelike separated regions is negligible and that there is a finite speed at which correlations and entanglement can be distributed. Second, we discuss how these ideas can be used to prove lower bounds on the time it takes to convert states without topological quantum order to states with that property. Finally, we show that the rate at which entropy can be created in a block of spins scales like the boundary of that block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号