首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a rigorous analysis of the phenomenon of decoherence for general N-level systems coupled to reservoirs. The latter are described by free massless bosonic fields. We apply our general results to the specific cases of the qubit and the quantum register. We compare our results with the explicitly solvable case of systems whose interaction with the environment does not allow for energy exchange (non-demolition, or energy conserving interactions). We suggest a new approach which applies to a wide variety of systems which are not explicitly solvable.  相似文献   

2.
Ming-Liang Hu 《Physics letters. A》2010,374(34):3520-3528
We investigate disentanglement dynamics of two coupled qubits and qutrits which interact uniformly to a general XY spin-chain environment with the Dzyaloshinsky-Moriya (DM) interaction. We obtained exact expression of the time evolution operator and analyzed the dynamical process of the decoherence factors. Through explicitly calculating the concurrence and the negativity, we examined disentanglement behaviors of two coupled central spins evolve from different initial pure states, which are found to be nontrivially different from those of the uncorrelated ones, in particular, the enhanced decay of the entanglement induced by quantum criticality of the surrounding environment may be broken by introducing self-Hamiltonian of the central spin system. Moreover, the DM interaction may have different influences on decay of the entanglement depending on the strength of the system-environment coupling, the anisotropy of the environmental spin chain and the intensity of the transverse magnetic field, as well as the explicit form of the initial states of the central spin system.  相似文献   

3.

The phonon induced mechanisms of relaxation/decoherence in quantum dots are analysed. A non-perturbative technique - a modification of the Davydov transformation appropriate to the localised particles is applied for solving the electron-phonon eigenvalue problem in a quantum dot at magnetic field presence. The decay rates for polaron relaxation via the anharmonicity induced channel are analysed in details. In particular, it is indicated that previous, of perturbative type, estimations of the anharminicity induced relaxation rates were too severe and after including the coherence effects they are of, at least, one order longer. The process of exciton dressing with phonons is also analysed as the unavoidable source of picosecond scale decoherence in optically driven nanostructures. A break-down of an instant Pauli spin blocking mechanism and a large enhancement of the Fröhlich constant for confined electrons are also addressed.  相似文献   

4.
A dynamical model for the collapse of the wave function in a quantum measurement process is proposed by considering the interaction of a quantum system (spin -1/2) with a macroscopic quantum apparatus interacting with an environment in a dissipative manner. The dissipative interaction leads to decoherence in the superposition states of the apparatus, making its behaviour classical in the sense that the density matrix becomes diagonal with time. Since the apparatus is also interacting with the system, the probabilities of the diagonal density matrix are determined by the state vector of the system. We consider a Stern-Gerlach type model, where a spin-1/2 particle is in an inhomogeneous magnetic field, the whole set up being in contact with a large environment. Here we find that the density matrix of the combined system and apparatus becomes diagonal and the momentum of the particle becomes correlated with a spin operator, selected by the choice of the system-apparatus interaction. This allows for a measurement of spin via a momentum measurement on the particle with associated probabilities in accordance with quantum principles.  相似文献   

5.
The generation of non-equilibrium thermal quantum discord and entanglement is investigated in a three-spin chain whose two end spins are respectively coupled to two thermal reservoirs at different temperatures. We show that the spin chain can be decoupled from the thermal reservoirs by homogeneously applying a magnetic field and including a strong three-spin interaction, and then the maximal steady-state quantum discord and entanglement in the two end spins can always be created. In addition, the present investigation may provide a useful approach to control coupling between a quantum system and its environment.  相似文献   

6.
We study the steady state of a three-level system in contact with a non-equilibrium environment, which is composed of two independent heat baths at different temperatures. We derive a master equation to describe the non-equilibrium process of the system. For the three level systems with two dipole transitions, i.e., the ΛΛ-type and V-type, we find that the interferences of two transitions in a non-equilibrium environment can give rise to non-vanishing steady quantum coherence, namely, there exist non-zero off-diagonal terms in the steady state density matrix (in the energy representation). Moreover, the non-vanishing off-diagonal terms increase with the temperature difference of the two heat baths. Such interferences of the transitions were usually omitted by secular approximation, for it was usually believed that they only take effect in short time behavior and do not affect the steady state. Here we show that, in non-equilibrium systems, such omission would lead to the neglect of the steady quantum coherence.  相似文献   

7.
We measure the dynamics of nuclear spins in a single-electron charged self-assembled InGaAs quantum dot with negligible nuclear spin diffusion due to dipole-dipole interaction and identify two distinct mechanisms responsible for the decay of the Overhauser field. We attribute a temperature-independent decay lasting ~100 sec at 5 T to intradot diffusion induced by hyperfine-mediated indirect nuclear spin interaction. By repeated polarization of the nuclear spins, this diffusion induced partial decay can be suppressed. We also observe a gate voltage and temperature-dependent decay stemming from cotunneling mediated nuclear spin flips that can be prolonged to ~30 h by adjusting the gate voltage and lowering the temperature to ~200 mK. Our measurements indicate possibilities for exploring quantum dynamics of the central spin model.  相似文献   

8.
A new quantum simulation approach has been applied in the present work to the two-dimensional (2D) ferromagnetic and antiferromagnetic Ising lattices to calculate their magnetic structures, magnetizations, free energies and specific heats in the absence of an external magnetic field. Surprisingly, no size effects could be observed in our simulations performed for the Ising lattices of different sizes. Most importantly, our calculated spontaneous thermally averaged spins for the two kinds of systems are exactly same as those evaluated with quantum mean field theory, and the magnetic structures simulated at all chosen temperatures are perfectly ferromagnetic or antiferromagnetic, verifying the correctness and applicability of our quantum model and computational algorithm. On the other hand, if the classical Monte Carlo (CMC) method is applied to the ferromagnetic 2D Ising lattice with S=1, it is able to generate correct magnetization well consistent with Onsager's theory; but in the case of S=1/2, the computational results of CMC are incomparable to those predicted with the quantum mean field theory, giving rise to very much reduced magnetization and considerably underestimated Curie temperature. The difficulty met by the CMC method is mainly caused by its improperly calculated exchange energy of the randomly selected spin in every simulation step, especially immediately below the transition temperature, where the thermal averages of spins are much less than 1/2, however they are assigned to ±1/2 by CMC to evaluate the exchange energies of the spins, such improper manipulation is obviously impossible to lead the code to converge to the right equilibrium states of the spin systems.  相似文献   

9.
We present a one-step deterministic multipartite entanglement purification scheme for an N-photon system in a Greenberger-Horne-Zeilinger state with linear optical elements. The parties in quantum communication can in principle obtain a maximally entangled state from each N-photon system with a success probability of 100%. That is, it does not consume the less-entangled photon systems largely, which is far different from other multipartite entanglement purification schemes. This feature maybe make this scheme more feasible in practical applications.  相似文献   

10.
研究了热平衡温度,自旋交换相互作用,Dzyaloshinskii-Moriya(DM)相互作用及外加非一致性磁场对两比特海森堡XYZ自旋链量子系统的热纠缠与局域量子不确定度的影响,对比分析了并发度量子纠缠与局域量子不确定度描述自旋链系统量子关联的差别.结果表明自旋链系统的量子纠缠在热平衡温度,DM相互作用及外加磁场的非一致性参数的变化情况下均会出现纠缠突然死亡的再生现象,而自旋链系统的局域量子不确定度随着这些参数呈连续变化现象.并且,自旋交换相互作用,DM相互作用及外加横向磁场作用强度较小时,他们的变化对自旋链系统的量子纠缠与局域量子不确定度的影响有着明显的差别.  相似文献   

11.
Spin excitations in granular structures with ferromagnetic nanoparticles   总被引:1,自引:0,他引:1  
Spin excitations and relaxation in a granular structure which contains metallic ferromagnetic nanoparticles in an insulating amorphous matrix are studied in the framework of the s-d exchange model. As the d system, we consider the granule spins, and the s system is represented by localized electrons in the amorphous matrix. In the one-loop approximation with respect to the s-d exchange interaction for a diagram expansion of the spin Green’s function, the spin excitation spectrum is found, which consists of spin-wave excitations in the granules and of polarized spin excitations. In polarized spin excitations, a change in the granule spin direction is accompanied by an electron transition with a spin flip between two sublevels of a split localized state in the matrix. We considered polarized spin relaxation (relaxation of the granule spins occurring by means of polarized spin excitations) determined by localized deep energy states in the matrix and the thermally activated electronic cloud of the granule. It is found that polarized spin relaxation is efficient over a wide frequency range. Estimates made for structures with cobalt granules showed that this relaxation could be observed in centimetric, millimetric, and submillimetric wavelength ranges.  相似文献   

12.
Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet–triplet anticrossing point which appears due to the spin–orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin–orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.  相似文献   

13.
Electron spin dephasing is studied by time-resolved Kerr rotation in n-type modulation-doped CdMnTe quantum wells with very dilute Mn content. We find good agreement between measured and calculated electron spin relaxation times, considering relaxation induced by fluctuating exchange field created by the Mn spins, and taking into account inhomogeneous heating of the Mn spins by laser pulses.  相似文献   

14.
We report on a field-dependent photoluminescence (PL) emission rate for the transitions between band states in modulation-doped CdTe/Cd1−xMgxTe single quantum wells in the integer quantum Hall region. The recombination time observed for the magneto-PL spectra varies in concomitance with the integer quantum Hall plateaus. Furthermore, different PL decay times were observed for the two circular polarizations, i.e. for the transitions between the Zeeman split subbands of the Landau levels. We analyzed the data in comparison with the experimentally determined spin polarization of the conduction electrons and the Zeeman splitting of the valence band. Furthermore, we discuss the relevance of the spin polarization of the conduction electrons, the electron–hole exchange interaction and the spin-flip processes of the hole states for the PL decay time.  相似文献   

15.
In this paper, the critical behavior of the general XY spin chain with the Dzyaloshinsky-Moriya (DM) interaction is studied by means of a Loschmidt Echo (LE) calculation. LE presents a Gauss decay in the region of magnetic field intensity |λ|<1 and an exponential decay in the region of |λ|>1. There exists a critical spin chain size NC. When spin chain size is larger than NC, the value of λ corresponding to the minimum value of LE (λm) is independent of the spin chain size and keeps a stable value. In the region of λ<0, the stable value is same for different DM interactions. In the region of λ>0, the stable value varies with changing DM interaction.  相似文献   

16.
This article reviews the use of single electron spins to compute. In classical computing schemes, a binary bit is represented by the bistable spin polarization of a single electron confined in a quantum dot and subjected to a weak magnetic field. The spin orientation can be either parallel or anti-parallel to the field, so that it becomes a binary variable which can encode logic 0 and logic 1. Coherent superposition of these two polarizations can represent a qubit for quantum computing. By engineering the exchange interaction between closely spaced spins in neighboring quantum dots, it is possible to implement either classical or quantum logic gates.  相似文献   

17.
The low energy behavior of the Kondo necklace model with an aperiodic exchange modulation is studied using a representation for the localized and conduction electron spins, in terms of local Kondo singlet and triplet operators at zero and finite temperature for arbitrary d dimensions. A decoupling scheme on the double time Green's functions is used to find the dispersion relation for the excitations of the system. We determined the dependence between the chemical aperiodic exchange modulation and the spin gap in 1d, 2d and 3d, at zero temperature and in the paramagnetic side of the phase diagram. On the other hand, at low but finite temperatures, the line of Néel transitions in the antiferromagnetic phase is calculated in function of the aperiodic exchange modulation.  相似文献   

18.
We study the time evolution of entanglement of two spins in an anisotropically coupled quantum dot interacting with the unpolarised nuclear spins environment. We assume that the exchange coupling strength in the z direction J z is different from the lateral one J l . We observe that the entanglement decays as a result of the coupling to the nuclear environment and reaches a saturation value, which depends on the value of the exchange interaction difference J = ‖J l ? J z ‖ between the two spins and the strength of the applied external magnetic field. We find that the entanglement exhibits a critical behaviour controlled by the competition between the exchange interaction J and the external magnetic field. The entanglement shows a quasi-symmetric behaviour above and below a critical value of the exchange interaction. It becomes more symmetric as the external magnetic field increases. The entanglement reaches a large saturation value, close to unity, when the exchange interaction is far above or below its critical value and a small one as it closely approaches the critical value. Furthermore, we find that the decay rate profile of entanglement is linear when the exchange interaction is much higher or lower than the critical value but converts to a power law and finally to a Gaussian as the critical value is approached from both directions. The dynamics of entanglement is found to be independent of the exchange interaction for an isotropically coupled quantum dot.  相似文献   

19.
20.
The free induction decay (FID) of the transverse magnetization in a dipolar-coupled rigid lattice is a fundamental problem in magnetic resonance and in the theory of many-body systems. As it was shown earlier the FID shapes for the systems of classical magnetic moments and for quantum nuclear spin ones coincide if there are many nearly equivalent nearest neighbors n in a solid lattice. In this paper, we reduce a multispin density matrix of above system to a two-spin matrix. Then we obtain analytic expressions for the mutual information and the quantum and classical parts of correlations at the arbitrary spin quantum number S, in the high-temperature approximation. The time dependence of these functions is expressed via the derivative of the FID shape. To extract classical correlations for S > 1/2 we provide generalized POVM measurement (positive-operator-valued measure) using the basis of spin coherent states. We show that in every pair of spins the portion of quantum correlations changes from 1/2 to 1/(S + 1) when S is growing up, and quantum properties disappear completely only if S → ∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号