首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Graphene is a monoatomic layer of graphite with carbon atoms arranged in a two-dimensional honeycomb lattice configuration. It has been known for more than 60 years that the electronic structure of graphene can be modelled by two-dimensional massless relativistic fermions. This property gives rise to numerous applications, both in applied sciences and in theoretical physics. Electronic circuits made out of graphene could take advantage of its high electron mobility that is witnessed even at room temperature. In the theoretical domain the Dirac-like behaviour of graphene can simulate high energy effects, such as the relativistic Klein paradox. Even more surprisingly, topological effects can be encoded in graphene such as the generation of vortices, charge fractionalisation and the emergence of anyons. The impact of the topological effects on graphene's electronic properties can be elegantly described by the Atiyah–Singer index theorem. Here we present a pedagogical encounter of this theorem and review its various applications to graphene. A direct consequence of the index theorem is charge fractionalisation that is usually known from the fractional quantum Hall effect. The charge fractionalisation gives rise to the exciting possibility of realising graphene based anyons that unlike bosons or fermions exhibit fractional statistics. Besides being of theoretical interest, anyons are a strong candidate for performing error free quantum information processing.  相似文献   

2.
Starting from a specific definition of fractional statistics for hard-core particles, we find a set of intermediate statistics systems, in which a single-particle quantum state can be effectively occupied by an integer number of identical particles — M-ons, as in the case for fermions and bosons. A quantum statistical theory of an ideal M-on gas is formulated exactly, and the associated distribution is explicitly represented in a simple analytical form. A possible application to the fractional quantum Hall effect is also briefly discussed.  相似文献   

3.
The fractional statistics of the anyons proposed by Wilczek are demonstrated in a simple manner using single-valued wave functions. Taking the magnetic flux tube and charge comprising each anyon to be bosons, the wave function for two identical anyons is symmetrical with respect to the interchange, but for ρΦ = π, where ρ is the charge and Φ the magnetic flux in each anyon, the anyons behave as fermions, and for other values of ρΦ, the anyons obey intermediate statistics.  相似文献   

4.
We study a quantum liquid of particles interacting via a long-ranged two-body potential in three dimensions where the original particles are supposed to be either bosons or fermions. We show that such liquids exhibit the nature of a quantum liquid with fractional exclusion statistics. In both quantum liquids enlarged pseudo-Fermi surfaces are formed from bosons and fermions, although with different excitations. Hence, we conclude that the microscopic origin of exclusion statistics comes from the nature of long-ranged two-body interactions between the particles.  相似文献   

5.
Even though composite fermions in the fractional quantum Hall liquid are well established, it is not yet known up to what energies they remain intact. We probe the high-energy spectrum of the 1/3 liquid directly by resonant inelastic light scattering, and report the observation of a large number of new collective modes. Supported by our theoretical calculations, we associate these with transitions across two or more composite fermions levels. The formation of quasiparticle levels up to high energies is direct evidence for the robustness of topological order in the fractional quantum Hall effect.  相似文献   

6.
We report on a numerical experiment in which we use time-dependent potentials to braid non-Abelian quasiparticles. We consider lattice bosons in a uniform magnetic field within the fractional quantum Hall regime, where ν, the ratio of particles to flux quanta, is near 1/2, 1, or 3/2. We introduce time-dependent potentials which move quasiparticle excitations around one another, explicitly simulating a braiding operation which could implement part of a gate in a quantum computation. We find that different braids do not commute for ν near 1 and 3/2, with Berry matrices, respectively, consistent with Ising and Fibonacci anyons. Near ν=1/2, the braids commute.  相似文献   

7.
8.
Longhi S  Della Valle G 《Optics letters》2012,37(11):2160-2162
Anyons are nonlocal quasi-particles carrying fractional statistics that interpolate between bosons and fermions. Here we propose a photonic realization of anyons moving on a one-dimensional lattice, which is based on light transport in an engineered square array of optical waveguides with a helically bent axis. Our photonic simulator enables visualization of the nonlocal nature of anyons in Fock space and the persistence of correlated tunneling even in the absence of particle interaction.  相似文献   

9.
A form of statistical interaction term of one-dimensional anyons is introduced, based on which one-dimensional anyon models are theoretically realized, and the statistical transmutation between bosons (or fermions) and anyons is established in quantum mechanics formalism. Two kinds of anyon models which are being studied are recovered and reexplained naturally in our formalism.  相似文献   

10.
We consider the many-particle quantum mechanics of anyons, i.e. identical particles in two space dimensions with a continuous statistics parameter ${\alpha \in [0, 1]}$ α ∈ [ 0 , 1 ] ranging from bosons (α = 0) to fermions (α = 1). We prove a (magnetic) Hardy inequality for anyons, which in the case that α is an odd numerator fraction implies a local exclusion principle for the kinetic energy of such anyons. From this result, and motivated by Dyson and Lenard’s original approach to the stability of fermionic matter in three dimensions, we prove a Lieb-Thirring inequality for these types of anyons.  相似文献   

11.
We analyse the coherence properties of two particles trapped in a one-dimensional harmonic potential. This simple model allows us to derive analytic expressions for the first and second order coherence functions. We investigate their properties depending on the particle nature and the temperature of the quantum gas. We find that at zero temperature non-interacting bosons and fermions show very different correlations, while they coincide for higher temperatures. We observe atom bunching for bosons and atom anti-bunching for fermions. When the effect of s-wave scattering between bosons is taken into account, we find that the range of coherence is enhanced or reduced for repulsive or attractive potentials, respectively. Strongly repelling bosons become in some way more “fermion-like" and show anti-bunching. Their first order coherence function, however, differs from that for fermions. Received 19 September 2002 Published online 4 February 2003  相似文献   

12.
We present an inspection of the statistics of particles including composite fermions on a torus starting from a braid group analysis. For this purpose we considered a system of electrons confined to the surface of a torus under the influence of a strong magnetic field and interacting through a general rotational invariant potential. An explanation of the appearance of the cyclotron braids as an effect of restriction imposed by magnetic field on braid trajectories which in analyzed case reduces the full braid group to one of its subgroups (i.e. cyclotron subgroups), is given. The modified Feynman path-integral method is also reproduced with some minor enhancements. We improve known results concerning on braid groups on a torus in two directions: we obtain new estimates in terms of cyclotron braid subgroups and cyclotron band generator, respectively; we demonstrate that only multi-loop generators are accessible in the fractional quantum regime well and we also formally explain the unique statistic of composite fermions by construct trial wave function for the system on a torus, based on this idea. The topological oddness of torus geometry can be driven by shifting of electrons between the two different group of generators allowed for an explanation in satisfactory accordance the both compact commensurability condition and some numerical calculations in toroidal geometry. Besides, our approach may shed some new light on few interesting aspects in better understanding the fractional quantum Hall effect.  相似文献   

13.
Most states of the fractional quantum Hall effect may be interpreted in terms of an integral quantum Hall effect of weakly-interacting quasiparticles (composite fermions). The recently discovered state does not belong to these states because its formation is due to the residual interactions between composite fermions, which become relevant when the composite-fermion levels are only partially filled. We have derived a model of interacting composite fermions, which reveals the self-similarity of the fractional quantum Hall effect and which allows for a systematic study of higher generations of composite fermions. Here, we derive the form of the interaction potential between these hierarchical composite fermions and provide some stability criteria for such states.  相似文献   

14.
15.
Using the Calogero model as an example, we show that the transport in interacting nondissipative electronic systems is essentially nonlinear and unstable. Nonlinear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for nonlinear systems, a propagating semiclassical wave packet develops a shock wave at a finite time. A wave packet collapses into oscillatory features which further evolve into regularly structured localized pulses carrying a fractionally quantized charge. The Calogero model can be used to describe fractional quantum Hall edge states. We discuss perspectives of observation of quantum shock waves and a direct measurement of the fractional charge in fractional quantum Hall edge states.  相似文献   

16.
Rapidly rotating two-dimensional ultracold Bose–Einstein condensates of spinless bosons in a harmonic trap have attracted considerable interest during the recent years. It is expected that, in the fast-rotation limit, the system of bosons will exhibit collective behavior similar to that of two-dimensional electrons in the fractional quantum Hall effect regime. It is predicted that the most robust correlated bosonic state in this regime will be the Bose Laughlin state at a half filling factor. An exact treatment of such a state is generally a formidable task due to the inherent many-particle nature of the wave function. We report in this work that a transformation to Jacobi coordinates allows one to obtain much desirable exact analytic closed-form expressions for various quantities of interest corresponding to a Bose Laughlin wave function for various finite systems of particles.  相似文献   

17.
The generalized Hong-Ou-Mandel interferometer with anyons is studied. Novel interference results different from bosons or fermions are found. An experimental scheme based on linear optics is proposed and realized to simulate the fourth-order interference phenomenon of anyons.  相似文献   

18.
Applications of conformal field theory to the theory of fractional quantum Hall systems are discussed. In particular, Laughlin's wave function and its cousins are interpreted as conformal blocks in certain rational conformal field theories. Using this point of view a hamiltonian is constructed for electrons for which the ground state is known exactly and whose quasihole excitations have nonabelian statistics; we term these objects “nonabelions”. It is argued that universality classes of fractional quantum Hall systems can be characterized by the quantum numbers and statistics of their excitations. The relation between the order parameter in the fractional quantum Hall effect and the chiral algebra in rational conformal field theory is stressed, and new order parameters for several states are given.  相似文献   

19.
The experimentally observed filling factors of the fractional quantum Hall effect can be described in terms of the composite fermion wave function of the Jastrow-Slater form [0pt] fully projected into the lowest Landau level. The Slater determinant of the above composite fermion wave function represents the filled Landau levels of composite fermions evaluated at the corresponding reduced magnetic field. For a system of fermions studied in the thermodynamic limit, we prove that in the even-denominator-filled state limit (when the number of filled Landau levels of composite fermions becomes infinite), the above composite fermion wave function exactly transforms into the Rezayi-Read Fermi-sea-like wave function [0pt] constructed by attaching 2m flux quanta to the Slater determinant of two-dimensional free fermions at the density corresponding to that filling. We study the composite fermion wave function and its evolution into the Fermi-sea-like wave function for a range of filling factors very close to the even-denominator-filled state. Received 19 March 1999  相似文献   

20.
For a Minkowski spacetime of dimension three, particles of arbitrary, real spin and intermediate (-) statistics, called anyons, are studied within the framework of relativistic quantum field theory. The localization properties of interpolating fields for anyons and the relation between the spin of anyons and their statistics are discussed on general grounds. A model of a quantum field theory exhibiting anyons is described. Our results might be relevant in connection with the fractional quantum Hall effect and two-dimensional models of high-T c superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号