首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Blowout bifurcation in nonlinear systems occurs when a chaotic attractor lying in some symmetric subspace becomes transversely unstable. A class of five-dimensional continuous autonomous systems is considered, in which a two-dimensional subsystem is driven by a family of generalized Lorenz systems. The systems have some common dynamical characters. As the coupling parameter changes, blowout bifurcations occur in these systems and brings on change of the systems' dynamics. After the bifurcation the phenomenon of on-off intermittency appears. It is observed that the systems undergo a symmetric hyperchaos-chaos-hyperchaos transition via or after blowout bifurcations. An example of the systems is given, in which the drive system is the Chen system. We investigate the dynamical behaviour before and after the blowout bifurcation in the systems and make an analysis of the transition process. It is shown that in such coupled chaotic continuous systems, blowout bifurcation leads to a transition from chaos to hyperchaos for the whole systems, which provides a route to hyperchaos.  相似文献   

2.
Traditionally, there has been a clear distinction between classical systems and quantum systems, particularly in the mathematical theories used to describe them. In our recent work on macroscopic quantum systems, this distinction has become blurred, making a unified mathematical formulation desirable, so as to show up both the similarities and the fundamental differences between quantum and classical systems. This paper serves this purpose, with explicit formulations and a number of examples in the form of superconducting circuit systems. We introduce three classes of physical systems with finite degrees of freedom: classical, standard quantum, and mixed quantum, and present a unified Hilbert space treatment of all three types of system. We consider the classical/quantum divide and the relationship between standard quantum and mixed quantum systems, illustrating the latter with a derivation of a superselection rule in superconducting systems.  相似文献   

3.
An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum features of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson–antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of CP\mathcal{CP} violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.  相似文献   

4.
A classification of quantum systems into three categories, type I, II and III, is proposed. The classification is based on the degree of sensitivity upon initial conditions, and the appearance of chaos. The quantum dynamics of type I systems is quasi periodic displaying no exponential sensitivity. They arise, e.g., as the quantized versions of classical chaotic systems. Type II systems are obtained when classical and quantum degrees of freedom are coupled. Such systems arise naturally in a dynamic extension of the first step of the Born-Oppenheimer approximation, and are of particular importance to molecular and solid state physics. Type II systems can show exponential sensitivity in the quantum subsystem. Type III systems are fully quantized systems which show exponential sensitivity in the quantum dynamics. No example of a type III system is currently established. This paper presents a detailed discussion of a type II quantum chaotic system which models a coupled electronic-vibronic system. It is argued that type II systems are of importance for any field systems (not necessarily quantum) that couple to classical degrees of freedom.  相似文献   

5.
S Y Lou 《理论物理通讯》2020,72(5):57001-132
Multi-place nonlocal systems have attracted attention from many scientists. In this paper, we mainly review the recent progresses on two-place nonlocal systems (Alice-Bob systems) and four-place nonlocal models. Multi-place systems can firstly be derived from many physical problems by using a multiple scaling method with a discrete symmetry group including parity, time reversal, charge conjugates, rotations, field reversal and exchange transformations. Multi-place nonlocal systems can also be derived from the symmetry reductions of coupled nonlinear systems via discrete symmetry reductions. On the other hand, to solve multi-place nonlocal systems, one can use the symmetry-antisymmetry separation approach related to a suitable discrete symmetry group, such that the separated systems are coupled local ones. By using the separation method, all the known powerful methods used in local systems can be applied to nonlocal cases. In this review article, we take two-place and four-place nonlocal nonlinear Schrödinger (NLS) systems and Kadomtsev-Petviashvili (KP) equations as simple examples to explain how to derive and solve them. Some types of novel physical and mathematical points related to the nonlocal systems are especially emphasized.  相似文献   

6.
Multistability or coexistence of different chaotic attractors for a given set of parameters depending on the initial condition only is one of the most exciting phenomenon in dynamical systems. The schemes to design multistability systems via coupling two identical or non-identical but the same-dimensional systems have been proposed earlier. Coupled different-dimensional systems are very useful to describe the real-world physical and biological systems. In this paper, a scheme for designing a multistable system by coupling two different-dimensional dynamical systems has been proposed. Coupled Lorenz and Lorenz–Stenflo systems have been considered to illustrate the scheme. The efficiency of the scheme is shown numerically, by presenting phase diagrams, bifurcation diagrams and variation of maximum Lyapunov exponents.  相似文献   

7.
The three-body problem can be traced back to Newton in 1687,but it is still an open question today.Note that only a few periodic orbits of three-body systems were found in 300 years after Newton mentioned this famous problem.Although triple systems are common in astronomy,practically all observed periodic triple systems are hierarchical(similar to the Sun,Earth and Moon).It has traditionally been believed that non-hierarchical triple systems would be unstable and thus should disintegrate into a stable binary system and a single star,and consequently stable periodic orbits of non-hierarchical triple systems have been expected to be rather scarce.However,we report here one family of 135445 periodic orbits of non-hierarchical triple systems with unequal masses;13315 among them are stable.Compared with the narrow mass range(only 10-5)in which stable"Figure-eight"periodic orbits of three-body systems exist,our newly found stable periodic orbits have fairly large mass region.We find that many of these numerically found stable non-hierarchical periodic orbits have mass ratios close to those of hierarchical triple systems that have been measured with astronomical observations.This implies that these stable periodic orbits of non-hierarchical triple systems with distinctly unequal masses quite possibly can be observed in practice.Our investigation also suggests that there should exist an infinite number of stable periodic orbits of non-hierarchical triple systems with distinctly unequal masses.Note that our approach has general meaning:in a similar way,every known family of periodic orbits of three-body systems with two or three equal masses can be used as a starting point to generate thousands of new periodic orbits of triple systems with distinctly unequal masses.  相似文献   

8.
本文简单叙述了决定介观体系尺寸的退相位长度的物理含义,以及目前在介观和低维体系中值得关注的几个物理问题。从近期的发展看,退相位时间的低温饱和,二信电子系统的金属-绝缘体相变,正常金属/超导介观体系,准一维体系和分数量子化霍尔效应体系,以及单电子器件及其相关物理问题的研究是应该注意的重要方面。  相似文献   

9.
In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. We demonstrate the usefulness of zonal estimators by their application to a system of trapped bosons in a quasiperiodic potential in two dimensions, focusing on finite temperature properties across a wide range of values of the potential. Finally, we comment on the generalization of such estimators to local fluctuations of the particle numbers and to magnetic ordering in multi-component systems, spin systems, and systems with nonlocal interactions.  相似文献   

10.
Herein, recent work on van der Waals (vdW) systems in which at least one of the components has strong spin-orbit coupling is reviewed, focussing on a selection of vdW heterostructures to exemplify the type of interesting electronic properties that can arise in these systems. First a general effective model to describe the low energy electronic degrees of freedom in these systems is presented. The model is then applied to study the case of (vdW) systems formed by a graphene sheet and a topological insulator. The electronic transport properties of such systems are discussed and it is shown how they exhibit much stronger spin-dependent transport effects than isolated topological insulators. Then, vdW systems are considered in which the layer with strong spin-orbit coupling is a monolayer transition metal dichalcogenide (TMD) and graphene-TMD systems are briefly discussed. In the second part of the article, a case is discussed in which the vdW system includes a superconducting layer in addition to the layer with strong spin-orbit coupling. It is shown in detail how these systems can be designed to realize odd-frequency superconducting pair correlations. Finally, twisted graphene-NbSe2 bilayer systems are discussed as an example in which the strength of the proximity-induced superconducting pairing in the normal layer, and its Ising character, can be tuned via the relative twist angle between the two layers forming the heterostructure.  相似文献   

11.
<正>In order to figure out the dynamical behaviour of a fractional-order chaotic system and its relation to an integerorder chaotic system,in this paper we investigate the synchronization between a class of fractional-order chaotic systems and integer-order chaotic systems via sliding mode control method.Stability analysis is performed for the proposed method based on stability theorems in the fractional calculus.Moreover,three typical examples are carried out to show that the synchronization between fractional-order chaotic systems and integer-orders chaotic systems can be achieved. Our theoretical findings are supported by numerical simulation results.Finally,results from numerical computations and theoretical analysis are demonstrated to be a perfect bridge between fractional-order chaotic systems and integer-order chaotic systems.  相似文献   

12.
Polarized multi-antenna systems are an effective solution for reducing inter-antenna spacing while still maintaining low inter-antenna correlation. Traditionally, only dual-polarized antenna systems are used for polarized transceivers. In this paper, tri-polarized antenna systems are investigated. Starting from the polarization mechanisms in the wireless propagation channel, it is shown that dual-polarized MIMO systems show high sensitivity to the transmitter and receiver orientation, which may be very critical in practical applications. Tri-polarized MIMO systems are introduced as a solution to obtain a robust MIMO performances, which are independent of the transmitter and receiver orientation. The performances of dual- and tri-polarized MIMO systems are evaluated on real-world measured channels, and the limits of each of these systems is highlighted.  相似文献   

13.
We study frustrated quantum systems from a quantum information perspective. Within this approach, we find that highly frustrated systems do not follow any general "area law" of block entanglement, while weakly frustrated ones have area laws similar to those of nonfrustrated systems away from criticality. To calculate the block entanglement in systems with degenerate ground states, typical in frustrated systems, we define a "cooling" procedure of the ground state manifold and propose a frustration degree and a method to quantify constructive and destructive interference effects of entanglement.  相似文献   

14.
We examine the notion of the adiabatic approximation in open systems by applying it to closed systems. Our results shows that the notion is equivalent to the standard adiabatic approximation if the systems are initially in eigenstates, and it leads to a more general expression if the systems are in mixed states.  相似文献   

15.
We study spatial instabilities in reacting and diffusing systems, where diffusion is modeled by a persistent random walk instead of the usual Brownian motion. Perturbations in these reaction walk systems propagate with finite speed, whereas in reaction-diffusion systems localized disturbances affect every part instantly, albeit with heavy damping. We present evolution equations for reaction random walks whose kinetics do not depend on the particles' direction of motion. The homogeneous steady state of such systems can undergo two types of transport-driven instabilities. One type of bifurcation gives rise to stationary spatial patterns and corresponds to the Turing instability in reaction-diffusion systems. The other type occurs in the ballistic regime and leads to oscillatory spatial patterns; it has no analog in reaction-diffusion systems. The conditions for these bifurcations are derived and applied to two model systems. We also analyze the stability properties of one-variable systems and find that small wavelength perturbations decay in an oscillatory manner.  相似文献   

16.
人造量子系统的理论研究与代数动力学   总被引:19,自引:0,他引:19  
王顺金 《物理学进展》1999,19(4):331-370
从控制与利用微观系统的量子工程的观点,讨论了人造量子系统的基本物理问题。针对人造量子系统中的一大类———非自治量子系统的求解问题,提出了代数动力学理论方法。运用代数动力学,对人造量子系统进行了理论研究;对可积的非自治系统,详细介绍了线性系统和非线性可积系统的求解问题;对不可积系统,用代数动力学观点研究了量子规则运动和无规运动的特征,它们之间的过渡,以及它们对时间有关外场的不同响应。  相似文献   

17.
A theoretical model of mesoscopic systems, recently introduced by Iida et al. (IWZ), is extended to the case of systems with spin dependent interactions and systems of broken time reversal invariance. The quantum mechanical time reversal operator is represented by an operator acting in a space of abstract matrix fields. Thereby, the discussion of systems with different time reversal behaviour can be unified almost entirely. We recast the IWZ-model in a new parametrization, which is more closely related to other field theoretic models of mesoscopic systems, than the original one.  相似文献   

18.
Invariant Tori in Hamiltonian Systems with Impacts   总被引:2,自引:0,他引:2  
It is shown that a large class of solutions in two-degree-of-freedom Hamiltonian systems of billiard type can be described by slowly varying one-degree-of-freedom Hamiltonian systems. Under some non-degeneracy conditions such systems are found to possess a large set of quasiperiodic solutions filling out two dimensional tori, which correspond to caustics in the classical billiard. This provides a unified proof of existence of quasiperiodic solutions in convex billiards and other systems with impacts including classical billiard in electric and magnetic fields, dual billiard, and Fermi–Ulam systems. Received: 8 September 1999 / Accepted: 16 November 1999  相似文献   

19.
Long-lived spin states have been observed in a variety of systems. Although the dynamics underlying the long lifetimes of these states are well understood in the case of two-spin systems, the corresponding dynamics in systems containing more spins appear to be more complex. Recently it has been shown that a selection rule for transitions mediated by intramolecular dipolar relaxation may play a role in determining the lifetimes of long-lived states in systems containing arbitrary numbers of spins. Here we present a theory of long-lived states in systems containing three and four spins and demonstrate how it can be used to identify states that have little or no intramolecular dipolar relaxation.  相似文献   

20.
We show that with every separable classical Stäckel system of Benenti type on a Riemannian space one can associate, by a proper deformation of the metric tensor, a multi-parameter family of non-Hamiltonian systems on the same space, sharing the same trajectories and related to the seed system by appropriate reciprocal transformations. These systems are known as bi-cofactor systems and are integrable in quadratures as the seed Hamiltonian system is. We show that with each class of bi-cofactor systems a pair of separation curves can be related. We also investigate the conditions under which a given flat bi-cofactor system can be deformed to a family of geodesically equivalent flat bi-cofactor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号