共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei Wei Zhuangzhuang Tian Ling Jiang Gang Wang Jing Cui Shiyin Li 《Journal of Dispersion Science and Technology》2017,38(7):1021-1029
In this study, adsorption behavior and mechanism of Cu(II) onto carbonate-substituted hydroxyapatite (CHAP) in the absence and presence of humic acid (HA) were studied in batch experiments. The results showed that carbonate incorporation in HAP could significantly enhance the adsorption of Cu(II). In ternary systems, the presence of HA led to an increase in Cu(II) adsorption, dependent on HA concentration. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process of Cu(II) onto CHAP and equilibrium data were best described by Sips models. The order of addition sequences of substrates was found to have a noticeable effect on Cu(II) adsorption onto CHAP. The general trend with respect to Cu(II) adsorption being: (CHAP–Cu)–HA?>?(CHAP–HA)–Cu?>?(Cu–HA)–CHAP. The present findings were important for estimating and optimizing the removal of Cu(II) ions by using CHA as a potential adsorbent. 相似文献
2.
Adsorption of cadmium(II) on humic acid coated titanium dioxide 总被引:1,自引:0,他引:1
The rapid increase in nanotechnology has led to growing concerns on environmental effects and health risks of nanoparticles (NPs). Many studies investigated the adsorption of toxic pollutants on NPs; however, the interaction between heavy metals and natural organic matter (NOM) coated metal oxide NPs was scarcely studied. In this study, using humic acid (HA) as model NOM, the adsorption of Cd(II) on humic acid coated titanium dioxide (HA-TiO(2)) NPs was investigated. Solution parameters such as pH and salinity were investigated to exploit the mechanisms. Our results demonstrated that the adsorption isotherms of Cd(II) to both TiO(2) and HA-TiO(2) complied well with Freundlich model. q(e) values increased with pH increase, mainly due to electrostatic attraction, whereas q(e) values increased initially and then decreased at 100 mmol L(-1) with salinity increase, mainly due to complexation and electrostatic effects. It is noteworthy that an overall trend of higher Cd(II) adsorption was observed on HA-TiO(2) compared to that on TiO(2), implying that HA coating might modify bioavailability of heavy metals in aquatic environment. The possible adsorption mechanisms in views of electrostatic interactions and covalent effects were interpreted, and the X-ray photoelectron spectroscopy (XPS) results also verified the possible mechanisms. 相似文献
3.
Alvarez-Puebla RA Valenzuela-Calahorro C Garrido JJ 《Langmuir : the ACS journal of surfaces and colloids》2004,20(9):3657-3664
Brown humic acids (BHAs) constitute the most polar and soluble fraction of humic acids. Their colloidal character and their high number of functional surface groups justify their higher reactivity as against metallic cations with respect to other humic fractions (i.e., gray humic acids and humins). The aim of this work is to study the retention mechanisms of Cu(II), Ni(II), and Co(II) on a BHA by means of a proper combination of physical and chemical techniques: sorption isotherms, mathematical modeling of these isotherms, molecular modeling, FTIR, and N2 (77 K) and CO2 (273 K) adsorption. Electrostatic retention for the three cations is an important mechanism at very low concentrations. Its magnitude is higher than that of the specific retention in the initial stages of the retention but it decreases progressively with respect to the former as the initial metal concentration increases. The BHA surface area varies with the amount of retained metal. When the initial amount of added metal is low (n0 < 80 mmol kg(-1)), the cations form 2:1 complexes, which are energetically favored due to the chelate effect. To obtain this coordination, the BHA slightly modifies its conformation by decreasing its area. When the initial amount of added metal is sufficiently high to occupy most of the surface functional groups (n0 > 1280 mmol kg(-1)), the cations are heterogeneously retained over the whole surface, thus preventing the available groups at low n0 from giving place to the 2:1 complexes due to the fact that they are already occupied. 相似文献
4.
Sanna Hokkanen Eveliina Repo Terhi Suopajärvi Henrikki Liimatainen Jouko Niinimaa Mika Sillanpää 《Cellulose (London, England)》2014,21(3):1471-1487
The aim of the present study was to investigate the adsorption properties of aminopropyltriethoxysilane (APS) modified microfibrillated cellulose (MFC) in aqueous solutions containing Ni(II), Cu(II) and Cd(II) ions. The modified adsorbents were characterized using elemental analysis, Fourier transform infrared spectroscopy, SEM and zeta potential analysis. The adsorption and regeneration studies were conducted in batch mode using various different pH values and contact times. The maximum removal capacities of the APS/MFC adsorbent for Ni(II), Cu(II), and Cd(II) ions were 2.734, 3.150 and 4.195 mmol/g, respectively. The Langmuir, Sips and Dubinin-Radushkevich models were representative to simulate adsorption isotherms. The adsorption kinetics of Ni(II) Cu(II), and Cd(II) adsorption by APS/MFC data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that the pseudo-second-order kinetic equation and intra-particle diffusion model were adequate to describe the adsorption kinetics. 相似文献
5.
Adsorption of Ni(II) on clays 总被引:1,自引:0,他引:1
The present work investigates the adsorptive interactions of Ni(II) ions with kaolinite, montmorillonite, and their poly(oxo zirconium) and tetrabutylammonium derivatives in aqueous medium. Batch adsorption studies were carried out with various Ni(II) concentrations, amount of clay adsorbents, pH, agitation time and temperature. The adsorption is strongly dependent on pH of the medium with enhanced adsorption as the pH turns from acidic to alkaline side till precipitation sets in. The process was very fast initially and maximum adsorption was observed within 180 min of agitation. The kinetics of the interactions, tested with pseudo first order Lagergren equation, second order kinetics, Elovich equation, liquid film diffusion model and intra-particle diffusion mechanism, showed better agreement with second order kinetics (k2 = 1.3 x 10(-2) to 5.3 x 10(-2) g/(mg min)). The adsorption data gave good fits with Langmuir and Freundlich isotherms and yielded Langmuir monolayer capacity of 2.75 to 21.14 mg/g and Freundlich adsorption capacity of 0.70 to 3.40 mg(1-1/n) l(1/n)/g for the clay adsorbents. The adsorption process was exothermic with Delta H in the range of -24.0 to -45.1 kJ/mol accompanied by decrease in entropy (DeltaS: -118.2 to -160.5 J/(mol K)) and Gibbs energy (Delta G: -34.6 to -49.5 kJ/mol). The results have shown that montmorillonite has the largest adsorption capacity followed by ZrO-montmorillonite, TBA-montmorillonite, kaolinite, ZrO-kaolinite and TBA-kaolinite. Introduction of ZrO- and TBA- groups into the clays reduced their adsorption capacity by blocking the available adsorption sites. 相似文献
6.
Alvarez-Puebla RA Valenzuela-Calahorro C Garrido JJ 《Journal of colloid and interface science》2004,270(1):47-55
Humic substances (HS) are macromolecular products derived from a physical, chemical, and microbiological process called "humification." These substances play an important role in the mobility and bioavailability of nutrients and contaminants in the environment. Adsorption isotherms provide a macroscopic view of the retention phenomena. However, complementary techniques are needed in order to study the retention mechanism. The application of the classical models and some modern ones, based on humic substances chemistry, do not accurately describe these adsorption data. The aim of this paper is to model isotherms and combine adsorption data with spectroscopy and microscopy techniques to study the Cu(II) retention on a HS. The adsorption isotherms shape varies significantly with the solution pH from L-type (pH 2-6) to S-type (pH 8). FTIR shows that, when pH is 2 the retention of Cu(II), as [Cu(H(2)O)(6)](2+), is the preferred retention mechanism. The quantity of Cu(II) retained as [Cu(OH)(H(2)O)(6)](+) rises, as pH increases. At pH 4, Cu(II) begins to precipitate, which is the preferred mechanism at pH 8.02. The presence of HS has a great influence on the precipitation process of Cu(II), giving rise to amorphous precipitates. As it is shown by SEM-XRF, Cu(II) distributes heterogeneously on HS surface and accumulates on the humic phases. The presence of different anions (chloride and nitrate) slightly modifies the HS behavior as cation exchanger. When Cl(-) ions are present, part of the Cu(II) form [CuCl(4)](2-), which is stable in solution due to its negative charge; when the anion present is NO(3)(-) the formed complex, [CuNO(3)](+), is retained on the HS. 相似文献
7.
The amounts of adsorption of Cu2+, Ni2+, and Zn2+ from single, binary, and tertiary nitrate solutions onto glutaraldehyde cross-linked chitosan beads were measured. The beads had an average particle size and pore volume of 2 mm and 0.06 cm3/g, respectively, and had a BET surface area of 60 m2/g. All experiments were performed at 298 K as a function of initial pH (2.0–5.0), total metal concentration (0.77–17.0 mol/m3), and molar concentration ratio (0.25–4) in the aqueous phase. It was shown that the amount of metal adsorption generally increased with increasing solution pH. Competitive adsorption was significant in binary and tertiary systems when Cu2+ was present. The selectivity factor reached maximum in an equilibrium pH range of 5.1–5.3 and 4.5–4.9 for the Cu-Ni and Cu-Zn binary systems, respectively. This adsorbent provided a possibility for selective separation of Cu2+ from such multi-component solutions. 相似文献
8.
Stepan J. Chundak Vukadin M. Leovac Luka J. Bjelica 《Monatshefte für Chemie / Chemical Monthly》1987,118(8-9):923-930
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML
3]X
2·nH2O [M=Co(II), Ni(II);X=NO
3
–
, ClO
4
–
, 1/2SO
4
2–
], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML
2(NCS)2 [M=Co(II), Ni(II)] and CuL
2
X
2·nH2O (X=NO
3
–
, ClO
4
–
and 1/2SO
4
2–
), the oxoanions and NCS– take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 – , ClO 4 – , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 – , ClO 4 – , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.相似文献
9.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature. 相似文献
10.
M. Curtui I. Haiduc L. Ghizdavu 《Journal of Radioanalytical and Nuclear Chemistry》2002,251(1):163-166
Paper electrophoresis has been used for uranium(VI) separation from Fe(II), Co(II), Ni(II) and Cu(II). The background electrolyte (0.1M HNO3-NaNO3) at different pH values contains diethyldithiophosphoric acid as complexing agent. A plot of mobility versus pH is used to obtain information on the formation of dithiophosphate complexes and to compute the stability constant of an uranyldiethyldithiophosphate complex. 相似文献
11.
Ammonia adsorption on the surface of Ni(II)–, Cu(II)- and Co(II)-phthalocyanine has been studied by means of reflection spectroscopy. Ammonia bonds to the metal ions in the surface layers of phthalocyanines preferably in octahedral coordination. In the case of Co(II)-phthalocyanine the trivalent state of cobalt is stabilized. Close similarity between coordination in liquid phase and adsorption on the surface is observed.
- , , . , - . Co (II)- . .相似文献
12.
Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin 总被引:1,自引:0,他引:1
Demirbas A Pehlivan E Gode F Altun T Arslan G 《Journal of colloid and interface science》2005,282(1):20-25
The adsorption of copper(II), zinc(II), nickel(II), lead(II), and cadmium(II) on Amberlite IR-120 synthetic sulfonated resin has been studied at different pH and temperatures by batch process. The effects of parameters such as amount of resin, resin contact time, pH, and temperature on the ion exchange separation have been investigated. For the determination of the adsorption behavior of the resin, the adsorption isotherms of metal ions have also been studied. The concentrations of metal ions have been measured by batch techniques and with AAS analysis. Adsorption analysis results obtained at various concentrations showed that the adsorption pattern on the resin followed Freundlich isotherms. Here we report the method that is applied for the sorption/separation of some toxic metals from their solutions. 相似文献
13.
Adsorption of Cd (II), Cu (II), Ni (II), and Zn (II) from aqueous solutions on anaerobically digested sludge has been investigated. Experimental data has been fit to Langmuir, Freundlich, and Redlich-Peterson isotherms to obtain the characteristic parameters of each model. Based on the maximum adsorption capacity obtained from the Langmuir and the Redlich-Peterson isotherm the affinity of the studied metals for the sludge has been established as Cu (II)>Cd (II)>Zn (II)>Ni (II). Adsorption tests from multimetal systems confirm the affinity order obtained in the individual metal tests. The adsorption capacity for Cu (II) measured in individual tests is not reduced by the presence of the other above referred metals. Desorption of Zn (II) and Cd (II) previously bound to the sludge in front of Cu (II) and HCl solutions is also reported. Copyright 2000 Academic Press. 相似文献
14.
ZHENG Li-Min FU Yan LIN Jian-Jun XIN Xin-QuanCoordination Chemistry State Key Laboratory Department of Chemistry Nanjing University Nanjing Jiangsu China 《中国化学》1994,12(3):243-247
The solid-solid state reactions of o-aminobenzoic acid with Zn(OAc)2.2H2O, Cu(OAc)2 .H2O, Ni(OAc)2.4H2O and Mn(OAc)2.4H2O result in the formation of corresponding complexes M(OAB)2 (M = Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Mn(IⅡ)). XRD, IR and elemental analysis methods have been used to characterize the solid products. The activation energies of these reactions, which are calculated from the kinetic data obtained by means of the isothermal electrical conductivity measurement method, have been found to increase in the order: Cu(OAc)2.H2O(37.7 kJ.mol-1)~Mn(OAc)2.4H2O (39.7kJ.mol-1) < Zn(OAc)2.2H2O (56.3 kJ.mol-1) < Ni(OAc)2.4H2O (85.2 kJ.mol-1). The trend is related to their crystal structures. 相似文献
15.
The extraction properties of three geometrical isomers (α-, β- and δ-) of D-camphorquinone dioxime (H2CQD) with copper and nickel are describ 相似文献
16.
I. B. Dmitrieva K. P. Tikhomolova A. S. Chukhno 《Russian Journal of Applied Chemistry》2006,79(1):50-55
Kinetics of evolution of the electrosurface (electrokinetic potential and pH at isoelectric point) and adsorption properties is studied in the systems aqueous tetrazole-metal oxide (NiO or Fe2O3) in long-term experiments with variation of the tetrazole concentration and solution pH. 相似文献
17.
《Journal of Coordination Chemistry》2012,65(15):2489-2498
AbstractFive new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 1–3 display similar layers structures. In 1–3, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions. 相似文献
18.
Oualid Hamdaoui 《Journal of Dispersion Science and Technology》2017,38(8):1087-1091
The capability of Cedar bark (Cedrus atlantica Manetti) (CB) for the adsorption of Cu(II) from aqueous solutions was examined. Adsorption isotherm and kinetics of Cu(II) by CB were investigated through a number of batch adsorption experiments. The effect of experimental parameters such as initial Cu(II) concentration, adsorbent mass, initial pH and ionic strength on the removal of metal ions was examined. Equilibrium data were fitted to the Langmuir, Freundlich and Harkins–Jura isotherm models. Experimental equilibrium data were best represented by the Langmuir and Harkins–Jura isotherms. The findings revealed that the CB has the potential to be used as an adsorbent for the removal of heavy-metal ions from aqueous solutions. 相似文献
19.
Cui Jianzhong Shi Wei Cheng Peng Liao Daizheng Yan Shiping Jiang Zonghui Wang Genglin Yao Xinkan Wang Honggen 《中国科学:化学(英文版)》2002,45(6):640-646
Four dithiooxalato (Dto) bridged one-dimensional Ni(ll) and Ni(ll)Cu(ll) complexes (Me6[14]dieneN4)Ni2(Dto)2) (1), (Me6[14]dieneN4)CuNi(Dto)2 (2), (Me6[14]aneN4)Ni2(Dto)2 (3), and (Me6[14]aneN4)CuNi(Dto)2 (4), were synthesized. These complexes have been characterized by elemental analysis, IR, UV and ESR spectra. The crystal structure of complex3 was determined. It crystallizes in the monoclinic system, space group C2/c with a = 2. 2425(4) nm,b = 1.0088(2) nm,c= 1.4665(3) nm, β= 125.32(3)δ Z = 4;R = 0.076, Rw = 0.079. In the complex, Ni(1) coordinates four sulphur atoms of two Dto ligands in plane square environment. Ni(2) lies in the center of macrocyclic ligand. For Dto ligand, two sulphur atoms coordinate Ni(1), and O(1) coordinates Ni(2) and forms weak coordination bond. O(2) is linked to N(2) of macrocyclic ligand through hydrogen bond. 相似文献