首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general algorithm is proposed for constructing interlineation operators , x=(x1, x2) with the properties
  相似文献   

2.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

3.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

4.
We consider the general differential-functional equations
  相似文献   

5.
Necessary and sufficient conditions are derived in order that an inequality of the form
  相似文献   

6.
In this paper we solve the equations
  相似文献   

7.
FINITEDIFFERENCESCHEMESOFTHENONLINEARPSEUDO-PARABOLICSYSTEMDUMINGSHENG(杜明笙)(InstituteofAppliedPhysicsandComputationalMathemat...  相似文献   

8.
We consider the boundary value problem $\begin{gathered} div(\rho V) = 0, \rho |\Gamma _1 = \rho 0, \hfill \\ \rho (V,\nabla V) = v\Delta V, V|\Gamma = V^0 \hfill \\ \end{gathered} $ for a vector functionV=(V 1,V 2) and a scalar function ρ>-0 in a rectangular domain Ω ? ?2 with boundary Γ. Here $\Gamma _1 = \{ x \in \Gamma :(V^0 ,n)< 0\} , V_1^0 |_\Gamma > 0, v = const > 0.$ We prove that this problem is solvable in Hölder classes.  相似文献   

9.
10.
We study nonnegative solutions of the initial value problem for a weakly coupled system
  相似文献   

11.
A semilinear parabolic system in a bounded domain   总被引:1,自引:0,他引:1  
Consider the system
0, x \in \Omega \} , \hfill \\ v_t - \Delta v = u^q , in Q , \hfill \\ u(0, x) = u_0 (x) v(0, x) = v_0 (x) in \Omega , \hfill \\ u(t, x) = v(t, x) = 0 , when t \geqslant 0, x \in \partial \Omega , \hfill \\ \end{gathered} \right.$$ " align="middle" vspace="20%" border="0">  相似文献   

12.
13.
LetG be a locally compact group and (t)t 0 a continuous convolution semigroup of probability measures onG. We show that an operatorN is the infinitesimal generator of (t)t 0 iffN is defined at least on the spaceC 2(G) of twice right differentiable functions and if
  相似文献   

14.
The predator-prey model with two limit cycles   总被引:8,自引:0,他引:8  
This paper investigates the predator-prey system:x=k_1(x-ax)-k(x)y,y=(-k_3 βk(x)ywit.k(x)=k_2x, x≤x, k_2x, x>τ,where α, β, τ; k_1, k_2, k_3 are positive constants.The main results are as follows(i) In case k_3-βk_2τ≥0 system (1) has no limit cycle.(ii) In case k_3-βk_2τ<0, k_1 k_3-βk_2τ>0, and for O<α<<1, system (1) at least has two limitcycles.  相似文献   

15.
Two results on composed functions are proven. First we give conditions on and so that the mean behaves like , if , including the examples
1$$ " align="middle" border="0"> , not an integer for . Secondly we find conditions on the real positive numbers , such that are almost periodic and we compute their mean values and spectra.  相似文献   

16.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

17.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

18.
Conditions for the oscillation of all solutions and for the existence of nonoscillatory solutions with polynomial growth at infinity are given for the system of differential-functional equations of neutral type
  相似文献   

19.
Effective sufficient conditions are established for the solvability and unique solvability of the boundary value problem where is a matrix-function with bounded variation components, is a vector-function belonging to the Carathéodory class corresponding to are continuous functionals (in general nonlinear) defined on the set of all vector-functions of bounded variation.  相似文献   

20.
Let Ω1, Ω2 ⊂ ℝν be compact sets. In the Hilbert space L 21 × Ω2), we study the spectral properties of selfadjoint partially integral operators T 1, T 2, and T 1 + T 2, with
$ \begin{gathered} (T_1 f)(x,y) = \int_{\Omega _1 } {k_1 (x,s,y)f(s,y)d\mu (s),} \hfill \\ (T_2 f)(x,y) = \int_{\Omega _2 } {k_2 (x,t,y)f(x,t)d\mu (t),} \hfill \\ \end{gathered} $ \begin{gathered} (T_1 f)(x,y) = \int_{\Omega _1 } {k_1 (x,s,y)f(s,y)d\mu (s),} \hfill \\ (T_2 f)(x,y) = \int_{\Omega _2 } {k_2 (x,t,y)f(x,t)d\mu (t),} \hfill \\ \end{gathered}   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号