首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
发展了一种基于石英纳米孔道的单颗粒电化学动态分析方法, 用于单个CdSe/ZnS量子点纳米颗粒的尺寸分布分析. 其机制是向石英纳米孔道两端施加电压, 表面带有正电荷的单个CdSe/ZnS量子点纳米颗粒在电场力驱动下由管内向管外运动, 当量子点纳米颗粒穿过纳米孔道尖端狭小的限域空间时, 其表面正电荷使石英纳米孔道内电荷密度增加, 孔道内的电化学限域效应进一步将电荷密度增加的信息放大并转变为可读的离子流增强信号. 通过对动态离子流信号解析可实时获取具有2种不同尺寸的量子点纳米颗粒所导致的2类过孔事件信息, 从而对在限域空间内运动的纳米颗粒进行尺寸分布分析.  相似文献   

2.
Sandros MG  Shete V  Benson DE 《The Analyst》2006,131(2):229-235
Reagentless and reversible maltose biosensors are demonstrated using ZnS coated CdSe (CdSe@ZnS) nanoparticle emission intensities. This method is based on electron transfer quenching of unimolecular protein-CdSe@ZnS nanoparticle assemblies, which is provided by a protein-attached Ru(II) complex. This Ru(II) complex is presumed to reduce a valence band hole of the CdSe@ZnS excited state by tunneling through the ZnS overcoating. The Ru(II) complex mediated quenching of CdSe@ZnS nanoparticle emission was only decreased 1.2-fold relative to the CdSe nanoparticle systems. While four different Ru(II) complex attachment sites provided different amounts of nanoparticle emission quenching (1.20 to 1.75-fold decrease), all of these attachment sites yielded maltose-dependent intensity changes (1.1 to 1.4-fold increase upon maltose addition). Maltose dissociation constants for these four biosensing systems range from 250 nM to 1.0 microM, which are similar to the maltose-maltose binding protein dissociation constant that these sensors are based on. The increased fluorescence intensity was found to only occur in the presence of maltose. Furthermore, the ability of these reagentless protein-nanoparticle assemblies to perform maltose biosensing reversibly is demonstrated with the addition of alpha-glucosidase. Three 50 microM maltose additions after alpha-glucosidase addition showed increases of 2.2 microM, 600 nM, and 150 nM maltose. This result demonstrates a fluorometric method for examining alpha-glucosidase activity. Using maltose binding protein to control Ru(II) complex interactions with CdSe@ZnS nanoparticle surfaces provide a novel class of highly fluorescent, photostable biosensors that are selective for maltose.  相似文献   

3.
Here we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. The inner CdTe/CdS and CdTe/CdSe heterostructures have type-I, quasi-type-II, or type-II band offsets depending on the core size and shell thickness, and the outer CdS/ZnS and CdSe/ZnS structures have type-I band offsets. The emission maxima of the assembled heterostructures were found to be dependent on the CdTe core size, with a wider range of spectral tunability observed for the smaller cores. Because of encapsulation effects, the formation of successive shells resulted in a considerable increase in the photoluminescence quantum yield; however, identifying optimal shell thicknesses was required to achieve the maximum quantum yield. Photoluminescence lifetime measurements revealed that the decrease in the quantum yield of thick-shell nanocrystals was caused by a substantial decrease in the radiative rate constant. By tuning the diameter of the core and the thickness of each shell, a broad range of high quantum yield (up to 45%) nanocrystal heterostructures with emission ranging from visible to NIR wavelengths (500-730 nm) were obtained. This versatile route to engineering the optical properties of nanocrystal heterostructures will provide new opportunities for applications in bioimaging and biolabeling.  相似文献   

4.
Original organic capping TOPO/TOP groups of CdSe and CdSe/ZnS quantum dots (QDs), from mother solution were replaced with 2_mercaptoethanol, which was chosen as model compound, in order to achieve water solubility. Obtained water dispersions of CdSe and CdSe/ZnS QDs were characterized by UV/VIS absorption and luminescence techniques. Luminescence measurements revealed that bare cores are very sensitive to surface capping, transfer into water diminished emission intensity. Core/shell, CdSe/ZnS, QDs are much more resistant to changes of the capping and solvent, and significant part of emission intensity was preserved in water. The article is published in the original.  相似文献   

5.
The nanoscale aluminum bowls were derived from the porous alumina and were used as the flexible nanoscale reactors for the preparation of nanoparticles.Both single source precursor and preprepared nanoparticles were induced in the nanobowls by melting the precursor/polymer films spin-coated on aluminum nanobowis for the formation of nanostructural composites in the nanobowls.We have prepared a single nanoparticle or just a small number of metal(e.g.Pt) nanoparticles or semiconductor nanoparticles(e.g.CdSe or CdSe/ZnS core-shell nanostructures) in the nanobowls.  相似文献   

6.
The photophysical properties of CdSe and ZnS(CdSe) semiconductor quantum dots in nonpolar and aqueous solutions were examined with steady-state (absorption and emission) and time-resolved (time-correlated single-photon-counting) spectroscopy. The CdSe structures were prepared from a single CdSe synthesis, a portion of which were ZnS-capped, thus any differences observed in the spectral behavior between the two preparations were due to changes in the molecular shell. Quantum dots in nonpolar solvents were surrounded with a trioctylphosphine oxide (TOPO) coating from the initial synthesis solution. ZnS-capped CdSe were initially brighter than bare uncapped CdSe and had overall faster emission decays. The dynamics did not vary when the solvent was changed from hexane to dichloromethane; however, replacement of the TOPO cap by pyridine affected CdSe but not ZnS(CdSe). CdSe was then solubilized in water with mercapto-acetic acid or dihydrolipoic acid, whereas ZnS(CdSe) could be solubilized only with dihydrolipoic acid. Both solubilization agents quenched the nanocrystal emission, though with CdSe the quenching was nearly complete. Additional quenching of the remaining emission was observed when the redox-active molecule adenine was conjugated to the water-soluble CdSe but was not seen with ZnS(CdSe). The emission of aqueous CdSe could be enhanced under prolonged exposure to room light and resulted in a substantial increase of the emission lifetimes; however, the enhancement occurred concurrently with precipitation of the nanocrystals, which was possibly caused by photocatalytic destruction of the mercaptoacetic acid coating. These results are the first presented on aqueous CdSe quantum dot structures and are presented in the context of designing better, more stable biological probes.  相似文献   

7.
A new series of sulfide‐substituted poly(1,4‐phenylene vinylene) derivatives ( S1PPV–S3PPV ) with different composition ratios were successfully synthesized via the Gilch route. The CdSe/ZnS were grafted to the sulfur atoms by ligand exchange reaction. The grafted CdSe/ZnS contents were determined from TGA analysis to be from 4.6 to 37.8%. A new peak at 1151 cm?1 formed in FT‐IR after ligand exchange, which is attributed to the force formation between sulfur and CdSe. The GPC results show that the molecular weights of final polymers became higher after ligand exchange. Thin films of obtained polymers emitted bright green and yellow light with the max emission peak located from 546 to 556 nm. Double‐layer LEDs with an ITO/PEDOT/polymer/Ca/Al configuration were fabricated to evaluate the potential use of these polymers. The turn‐on voltages of the devices were about 4–5 V. As the CdSe/ZnS content increased in grafted polymers, the device performance was significantly enhanced as compared to pristine polymers. In the case of S3PPV , the double‐layer device showed a maximum luminance of 6073 cd/m2 with a current yield of 0.82 cd/A. The maximum luminance and current yield was enhanced to 13,390 cd/m2 and 2.25 cd/A by grafting CdSe/ZnS onto polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5378–5390, 2006  相似文献   

8.
水溶性的CdSe/ZnS纳米微粒的合成及表征   总被引:27,自引:0,他引:27  
L-半胱氨酸(Cys)作为稳定剂,合成了水溶性的CdSe/ZnS核壳结构的半导体纳米微粒。吸收光谱和荧光光谱表明,CdSe/ZnS纳米微粒比单一的CdSe纳米粒子具有更优异的发光特性。透射电子显微镜(TEM)、ED和XPS表征了CdSe/ZnS纳米微粒的结构、分散性及形貌。红外光谱证实半胱氨酸分子中的硫原子和氧原子参加了与纳米粒子表面的金属离子的配位作用。  相似文献   

9.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

10.
Spiropyran dyes were attached to fluorescent core-shell CdSe/ZnS nanocrystals via thiol-containing linkers. Photoisomerization of the dye to its merocyanine form by UV irradiation caused a dramatic loss in the intrinsic nanoparticle fluorescence, which was regained upon reversing the isomerization with visible light. The fluorescence quenching efficiency increased with increasing spectral overlap of fluorescence emission and merocyanine adsorption bands, consistent with FRET as the quenching mechanism. Typically, complete quenching required at least 80 bound dye molecules per particle.  相似文献   

11.
Incorporation of semiconductor nanoparticles into molecularly imprinted polymer provides a sensor material which can be easily shaped and with better selectivity because the bound template would quench the photoluminescence (PL) emission of quantum dots significantly. In this work, artificial receptors of various templates were synthesized with functional monomers such as methacrylic acid (MAA), semiconductor like CdSe/ZnS core-shell derivatized with 4-vinylpyridine and ethylene glycol dimethacrylic acid as the cross-linker. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and template molecules. The photoluminescence emission is unaffected upon incubation of analyte with the blank control polymer.  相似文献   

12.
The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K−1. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.  相似文献   

13.
Metalloprotein tethered CdSe nanoparticles have been generated to provide selective and reagentless maltose biosensing. As opposed to cell or protein detection by semiconducting nanoparticle bioconjugates, a modular method for small-molecule detection using semiconducting nanoparticle bioconjugates has been difficult. Here we report a method for reagentless protein-based semiconducting nanoparticle biosensors. This method uses Ru(II) complex-CdSe nanoparticle interactions and the maltose-induced conformation changes of maltose binding protein to alter the CdSe nanoparticle fluorescence emission intensity. In this proof-of-principle system, the maltose-induced protein conformation changes alter the Ru(II) complex-CdSe nanoparticle interaction, which increases the CdSe emission intensity. Altered CdSe emission intensity effects are best described as electron transfer from the Ru(II) complex to the CdSe excited state forming the nonfluorescent CdSe anion. Four surface-cysteine, Ru(II) complex-attached maltose-binding proteins have been studied for maltose dependent alteration of CdSe emission intensities. With 3.0-3.5 nm diameter CdSe nanoparticles, all ruthenated maltose-binding proteins display similar maltose-dependent increases (1.4-fold) in CdSe emission intensity and maltose binding affinities (KA = 3 x 106 M-1). For these four systems, the only difference was the sample-to-sample variation in maltose-dependent responses. Thus, very few surface cysteine mutations need to be examined to find a successful biosensor, as opposed to analogous systems using organic fluorophores. This strategy generates a unimolecular, or reagentless, semiconducting nanoparticle biosensor for maltose, which could be applied to other proteins with ligand-dependent conformation changes.  相似文献   

14.
A flexible, highly sensitive sensor of oxygen in non-aqueous solvents is described. It consists of CdSe/ZnS nanoparticles decorated with a considerable number of pyrene units, thus making the formation of the pyrene excimer possible. The emission of the pyrene excimer and that of the nanoparticle are suitably separated from each other and also from the excitation wavelength. This sensor can be applied as a ratiometric oxygen sensor by using the linear response of the pyrene excimer lifetime combined with the linear response of the nanoparticle excited state lifetime. This nanohybrid has been assayed in seven media with different dielectric constants and viscosities over the whole oxygen concentration range. In addition, the sensor versatility provides an easy way for monitoring oxygen diffusion through systems.  相似文献   

15.
We reported a facile route for overcoating CdS and ZnS shells around colloidal CdSe core nanocrystals. To synthesize such double shelled core/shell nanocrystals, first, CdSe core nanocrystals were prepared in a much “greener” and cheap route, which did not involve the use of hazardous and expensive trioctylphosphine. Then, a low-cost and labor-saving route was adopted for the CdS and ZnS shell growth with the use of thermal decomposition of commercial available air stable single-source precursors cadmium diethyldithio-carbamate and zinc diethyldithiocarbamate in a non-coordinating solvent at intermediate temperatures. Powder X-ray diffraction patterns and transmission electron microscopy images confirm the epitaxial growth of the shell in the core/shell nanocrystals. The photoluminescence quantum yield of the resulting CdSe/CdS/ZnS core/shell nanocrystals can be as high as 90% in organic media and up to 60% after phase transfer into aqueous media. By varying the size of CdSe cores, the emission wavelength of the obtained core/shell nanostructures can span from 554 to 636 nm.  相似文献   

16.
Carboxylated cellulose nanocrystals (CNCs) were decorated with CdSe/ZnS quantum dots (QDs) using a carbodiimide chemistry coupling approach. The one-step covalent modification was supported by nanoscale imaging, which showed QDs clustered on and around the CNCs after coupling. The QD–CNC hybrid nanoparticles remained colloidally stable in aqueous suspension and were fluorescent, exhibiting the broad excitation and narrow emission profile characteristic of the QDs. QD–CNCs in nanocomposite films imparted strong fluorescence within CNC-compatible matrices at relatively low loadings (0.15 nmol QDs/g of dry film), without altering the overall physical properties or self-assembly of the CNCs. The hybrid QD–CNCs may find applications in nanoparticle tracking, bio-imaging, optical/sensing devices, and anti-counterfeit technologies.  相似文献   

17.
利用溶液聚合和成酰胺反应合成了多功能梳状两亲性共聚物,聚(甲基丙烯酸-co-甲基丙烯酸十八酯)-(乙醇胺-乙二胺叶酸)(PSM-EE-FA).用红外光谱(FTIR),核磁共振(1H-NMR)及凝胶渗透色谱(GPC)表征了该聚合物的结构及分子量分布.实验结果证明合成了该聚合物,其数均分子量(Mn)为28600,多分散性为1.375.用该两亲梳状聚合物包覆油溶性CdSe/ZnS量子点,通过相转移作用,得到水溶性靶向量子点(PSM-EE-FA-QDs).该水溶性量子点溶液具有较好的稳定性.通过紫外-可见(UV-Vis)及荧光发射光谱分析对该量子点的光学性质进行研究.结果表明,PSM-EE-FA-QDs的紫外-可见光谱及荧光发射光谱峰形与原量子点基本一致.由于量子点表面聚合物层的形成,峰位发生少量红移.该量子点水溶液的荧光强度是原量子点氯仿溶液的98%,荧光产率是原量子点氯仿溶液的95%.动态光散射(DLS)及透射电镜(TEM)测试结果表明水溶性量子点分布均匀.合成的水溶性量子点不但光学性能稳定,而且聚合物及水溶性量子点的合成方法较为简便.  相似文献   

18.
An alternating triarylamine‐functionalized fluorene‐based copolymer synthesized using a Suzuki–Miyaura cross‐coupling procedure is used as blue emitting layer in polymer light‐emitting diodes (PLEDs). Subsequently, the effects of CdSe/ZnS quantum dots (QDs) on the optoelectronic properties of the copolymer are investigated. Therefore, CdSe/ZnS QDs are embedded into the copolymer matrix and hybrid PLEDs are fabricated. The devices comprised of CdSe/ZnS QDs reveal enhanced performances, yielding about 3.4 times more luminous efficiency than that of the device without QDs. Further enhancement is achieved by using electron transport layer; the luminous efficiency rose from 0.065 to 1.740 cd A?1 for the hybrid PLEDs, corresponding to a superb 27‐fold intensification of the efficiency. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 147–156  相似文献   

19.
A micro‐beam scanning X‐ray photoelectron spectroscopy (XPS) has been utilized to obtain information about the attachment of ligand to nanoparticles in solution by measuring the ligand components relative to nanoparticle components. CdSe/ZnS core/shell nanoparticles capped with three different kinds of ligand molecules are drop‐casted on a substrate and led to dry into self‐agglomerated micropatterns. Those specimens are mapped out by element‐sensitive XPS imaging. The spatial correlation between surface ligand molecules and core nanoparticle atoms is statistically analysed using Pearson correlation function, which provides with a useful assessment of the ligand binding to nanoparticle surfaces. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
ZnS/CdSe core‐shell and wire‐coil nanowire heterostructures have been synthesized by chemical vapor deposition assisted with pulsed laser ablation. Measurements from high‐resolution transmission electron microscopy and selected area electron diffraction have revealed that both ZnS/CdSe core‐shell and wire‐coil nanowires are of single‐crystalline hexagonal wurtzite structures and grow along the [0001] direction. While the lattice parameters of ZnS and CdSe in the core‐shell nanowires are nearly equal to those of bulk ZnS and CdSe, change of the lattice parameters in the CdSe‐coil is attributed to the doping of Zn into CdSe, resulting in the relaxation of compressive strain at the interface between CdSe‐coil and ZnS‐wire. Composition variation across the interfacial regions in the ZnS/CdSe nanowire heterostructures ranges only 10–15 nm despite the pronounced lattice mismatch between ZnS and CdSe by ?11%. Growth mechanisms of the ZnS/CdSe nanowire heterostructures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号