首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The principle of maximum pressure in a bubble for measurements of dynamic surface tension is realized in a fully automatically operating apparatus. The set-up yields data in the time interval from 1 ms up to several seconds and can be temperature controlled from 5° to 80°C. Experimental data obtained for different surfactants and gelatine in water and/or water/glycerine mixtures at different temperatures are discussed. A direct comparison with results from oscillating jet and inclined plate experiments shows excellent agreement.  相似文献   

2.
《Chemical physics letters》1987,142(6):472-476
A molecular dynamics method for determining the free energy difference between systems separated in configuration space has been developed. With this new approach, which is based on thermodynamic perturbation techniques, potentials of mean force for conformational changes may be calculated. As a test of the method, the potential of mean force and radial distribution function for liquid argon have been computed. The results are in good agreement with those obtained from an ordinary simulation.  相似文献   

3.
Using either the chemical potential of the immobile component of a solid dissolved in a fluid phase or the corresponding component of the tensor of chemical potential in solid phase, a new concept of the grand thermodynamic potential of solid-fluid two-phase system is proposed. For a planar interfacial surface, this makes it possible to generalize the notion of thermodynamic surface tension σ introduced by Gibbs that has the meaning of the formation work of a unit surface. This tension is determined as the specific surface excess of the grand thermodynamic potential. This definition of the thermodynamic surface tension does not depend on the position of the dividing surface and is common for fluids and solids. It is shown that, at the arbitrary position of dividing surface, the difference between thermodynamic σ and mechanical @[gamma] surface tensions for solid surface is determined by the nonuniformity of the tensor of chemical potential in a solid, as well as by its anisotropy in the bulk of solid phase.  相似文献   

4.
A theoretical model for the dynamic surface tension of an air bubble expanding in surfactant solution is proposed. The model accounts for the effect of convection on the surfactant diffusion and the effect of expansion of the bubble surface during the adsorption of surfactant molecules. Assuming small deviation from equilibrium and constant rate of expansion, an analytical solution for the surface tension and the subsurface concentration as a function of time is derived. The parameters of the model are computed from experimental data for sodium dodecyl sulfate obtained by the maximum bubble pressure method.  相似文献   

5.
A theoretical model for the dynamic surface tension of an air bubble expanding in micellar surfactant solution is proposed. The model accounts for the effect of expansion of the bubble surface during the adsorption of surfactant molecules (monomers) and the effect of disintegration of polydisperse micelles on the surfactant diffusion. Assuming small deviations from equilibrium and constant rate of expansion analytical expression for the surface tension and the subsurface concentration of monomers as a function of time is derived. The characteristic time of micellization is computed from the experimental data for two surfactants (sodium dodecyl sulfate and nonylphenol polyglycol ether) obtained by the maximum bubble pressure method.  相似文献   

6.
We examine the performance of several molecular simulation techniques aimed at evaluation of the surface tension through its thermodynamic definition. For all methods explored, the surface tension is calculated by approximating the change in Helmholtz free energy associated with a change in interfacial area through simulation of a liquid slab at constant particle number, volume, and temperature. The methods explored fall within three general classes: free-energy perturbation, the Bennett acceptance-ratio scheme, and the expanded ensemble technique. Calculations are performed for both the truncated Lennard-Jones and square-well fluids at select temperatures spaced along their respective liquid-vapor saturation lines. Overall, we find that Bennett and expanded ensemble approaches provide the best combination of accuracy and precision. All of the methods, when applied using sufficiently small area perturbation, generate equivalent results for the Lennard-Jones fluid. However, single-stage free-energy-perturbation methods and the closely related test-area technique recently introduced by Gloor et al. [J. Chem. Phys. 123, 134703 (2005)] generate surface tension values for the square-well fluid that are not consistent with those obtained from the more robust expanded ensemble and Bennett approaches, regardless of the size of the area perturbation. Single-stage perturbation methods fail also for the Lennard-Jones system when applied using large area perturbations. Here an analysis of phase-space overlap produces a quantitative explanation of the observed inaccuracy and shows that the satisfactory results obtained in these cases from the test-area method arise from a cancellation of errors that cannot be expected in general. We also briefly analyze the variation in method performance with respect to the adjustable parameters inherent to the techniques.  相似文献   

7.
8.
We have studied the calculation of surface and interfacial tension for a variety of liquid–vapor and liquid–liquid interfaces using molecular dynamics (MD) simulations. Because of the inherently small scale of MD systems, large pressure fluctuations can cause imprecise calculations of surface tension using the pressure tensor route. The capillary wave method exhibited improved precision and stability throughout all of the simulated systems in this study. In order to implement this method, the interface was defined by fitting an error function to the density profile. However, full mapping of the interface from coordinate files produced enhanced accuracy. Upon increasing the system size, both methods exhibited higher precision, although the capillary wave method was still more reliable. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The surface tension of oxygen at the liquid-vapor interface is calculated for the temperature range of 60-90 K using molecular-dynamics simulations and is shown to be within 1.0% error of experimental values for most of the temperatures studied. The potential used here is the same as in our previous study on liquid oxygen alone [S. D. Bembenek and B. M. Rice, J. Chem. Phys. 113, 2354 (2000)] and was optimized with an innovative statistical-mechanical method. The potential does not use a long-range cutoff nor a tail correction, which are usually considered necessary to obtain accurate values for the surface tension. We reason that the accuracy in surface tension is directly related to our parametrization method for the potential.  相似文献   

10.
The solubility, polarity, compatibility of the components of dynamically vulcanized thermoplastic elastomers: natural rubber, polypropylene, and layered filler, which determine the composition and properties of composites were computed. On the basis of calculations components for dynamic thermoplastic composites were selected and composite materials with improved physical and mechanical properties were developed.  相似文献   

11.
According to the need of industrial design and application of new desulfurization technique, we determine surface tension of dilute SO2 mixture gas in DMSO and DMSO?+?Mn2+ mixture absorbents, and establish their thermodynamic model based on experimental data, and the surface tension calculated by the model shows good agreement with experimental data.  相似文献   

12.
Molecular dynamics (MD) simulations in conjunction with the thermodynamic cycle perturbation approach has been used to calculate relative solvation free energies for acetone to acetaldehyde, acetone to pyruvic acid, acetone to 1,1,1-trifluoroacetone, acetone to 1,1,1-trichloroacetone, acetone to 2,3-butanedione, acetone to cyclopropanone, and formaldehyde hydrate to formaldehyde. To evaluate the dependence of relative solvation free energy convergence on MD simulation length and starting configuration two studies were performed. In the first study, each simulation started from the same well-equilibrated configuration and the length was varied from 153 to 1530 ps. In the second study, the relative solvation free energy differences were calculated starting from three different configurations and using 510 ps of MD simulation for each mutation. These results clearly indicate that, even for molecules with limited conformational flexibility, a simulation length of 510 ps or greater is required to obtain satisfactory convergence and, for the mutations of large structural changes between reactant and product, such as cyclopropanone to acetone, require much longer simulation lengths to achieve satisfactory convergence. These results also show that performing one long simulation is better than averaging results from three shortest simulations of the same length using different starting conformations. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1018–1027, 1999  相似文献   

13.
14.
The effect of the micelles on the dynamic surface tension of micellar surfactant solutions is studied experimentally by means of the maximum bubble pressure method. Different frequencies of bubbling ranging approximately between 1 and 30 s–1 are applied. The time dependence of the surface tension is calculated using a dead time correction. Water solutions of two types of surfactants with different concentrations are investigated: sodium dodecyl sulfate and nonylphenol polyglycol ether. The surface tension relaxes more quickly in the presence of micelles. The characteristic times of relaxation of the surface tension seem to be in the millisecond range. The time constants observed experimentally are explained in terms of the theory of surfactant diffusion affected by micellization kinetics.  相似文献   

15.
We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermodynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated with one patch, so that they interact via a square-well potential if they are sufficiently close one another, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase coexistences are computed and contrasted against corresponding Monte Carlo simulations results. We find that the perturbation theory describes rather accurately numerical simulations all the way from a fully covered square-well potential down to the Janus limit (half coverage). In the region where numerical data are not available (from Janus to hard-spheres), the method provides estimates of the location of the critical lines that could serve as a guideline for further efficient numerical work at these low coverages. A comparison with other techniques, such as integral equation theory, highlights the important aspect of this methodology in the present context.  相似文献   

16.
17.
18.
江润生  张立鹏 《化学通报》2016,79(9):793-792
表面张力是流体重要的物理性质,测定液体表面张力的方法通常包括毛细管上升法、最大气泡压力法、吊环法/吊片法、滴重法/滴体积法、旋滴法和悬滴法。本文综述了测定界面处表(界)面张力和表面压力的方法,详细介绍了基于最大拉力法(Whilhemy吊片法)改进的表面张力测试技术(Du Noüy-Padday),并且概述了这一技术近些年在生物研究、药物研发以及环境监测等领域方面的最新应用。  相似文献   

19.
The multiple histogram reweighting method takes advantage of calculating ensemble averages over a range of thermodynamic conditions without performing a molecular simulation at each thermodynamic point. We show that this method can easily be extended to the calculation of the surface tension. We develop a new methodology called multiple histogram reweighting with slab decomposition based on the decomposition of the system into slabs along the direction normal to the interface. The surface tension is then calculated from local values of the chemical potential and of the configurational energy using Monte Carlo (MC) simulations. We show that this methodology gives surface tension values in excellent agreement with experiments and with standard NVT MC simulations in the case of the liquid-vapor interface of carbon dioxide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号