首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
After a reminder of concerted/stepwise mechanistic dichotomy and other basic concepts and facts in the field, a series of recent advances is discussed. Particular emphasis is laid on the interactions between the fragments formed upon bond cleavage. These interactions may persist even in polar solvents and have important consequences on dissociative electron transfer kinetics and on the competition between concerted and stepwise pathways. Cleavage of ion radicals and its reverse reaction are examples of single electron transfer reactions concerted with bond cleavage and bond formation, respectively. The case of aromatic carbon–heteroatom bonds is particularly worth examination since symmetry restrictions impose circumventing a conical intersection. Reductive dehalogenases are involved in ‘dehalorespiration’ of anaerobic bacteria in which the role of dioxygen in aerobic organisms is played by major polychloride pollutants such as tetrachloroethylene. They offer an interesting illustration of how the coupling of electron transfer with bond breaking may be an important issue in natural processes. Applications of dissociative electron transfer concepts and models to mechanistic analysis in this class of enzymes will be discussed.  相似文献   

2.
The stepwise and concerted pathways for the McLafferty rearrangement of the radical cations of butanal (Bu(+)) and 3-fluorobutanal (3F-Bu(+)) are investigated with density functional theory (DFT) and ab initio methods in conjunction with the 6-311+G(d,p) basis set. A concerted transition structure (TS) for Bu(+), (H), is located with a Gibbs barrier height of 37.7 kcal/mol as computed with CCSD(T)//BHandHLYP. Three pathways for the stepwise rearrangement of Bu(+) have been located, which are all found to involve different complexes. The barrier height for the H(gamma) transfer is found to be 2.2 kcal/mol, while the two most favorable TSs for the C(alpha)-C(beta) cleavage are located 8.9 and 9.2 kcal/mol higher. The energies of the 3F-Bu(+) system have been calculated with the promising hybrid meta-GGA MPWKCIS1K functional of DFT. Interestingly, the fluorine substitution yields a barrier height of only 20.5 kcal/mol for the concerted TS, (3F-H). A smaller computed dipole moment, 12.1 D, for (3F-H) compared with 103.2 D for (H) might explain the stabilization of the substituted TS. The H(gamma) transfer, with a barrier height of 4.9 kcal/mol, is found to be rate-determining for the stepwise McLafferty rearrangement of 3F-Bu(+), in contrast to the unsubstituted case. By inspection of the spin and charge distributions of the stationary points, it is noted that the bond cleavages in the concerted rearrangements are mainly of heterolytic nature, while those in the stepwise channels are found to be homolytic.  相似文献   

3.
The key role of the molecular orbitals in describing electron transfer processes is put in evidence for the intervalence charge transfer (IVCT) of a synthetic nonheme binuclear mixed‐valence Fe3+/Fe2+ compound. The electronic reorganization induced by the IVCT can be quantified by controlling the adaptation of the molecular orbitals to the charge transfer process. We evaluate the transition energy and its polarization effects on the molecular orbitals by means of ab initio calculations. The resulting energetic profile of the IVCT shows strong similarities to the Marcus' model, suggesting a response behaviour of the ensemble of electrons analogue to that of the solvent. We quantify the extent of the electronic reorganization induced by the IVCT process to be 11.74 eV, a very large effect that induces the crossing of states reducing the total energy of the transfer to 0.89 eV. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Ion-pairing with electro-inactive metal ions may change drastically the thermodynamic and kinetic reactivity of electron transfer in chemical and biochemical processes. Besides the classical stepwise pathways (electron-transfer first, followed by ion-pairing or vice versa), ion-pairing may also occur concertedly with electron transfer. The latter pathway avoids high-energy intermediates but a key issue is that of the kinetic price to pay to benefit from this thermodynamic advantage. A model is proposed leading to activation/driving force relationships characterizing such concerted associative electron transfers for intermolecular and intramolecular homogeneous reactions and for electrochemical reactions. Contrary to previous assertions, the driving force of the reaction (defined as the opposite of the reaction standard free energy), as well as the intrinsic barrier, does not depend on the concentration of the ion-pairing agent, which simply plays the role of one of the reactants. Besides solvent and intramolecular reorganization, the energy of the bond being formed is the main component of the intrinsic barrier. Application of these considerations to reactions reported in recent literature illustrates how concerted ion-pairing electron-transfer reactions can be diagnosed and how competition between stepwise and concerted pathways can be analyzed. It provided the first experimental evidence of the viability of concerted ion-pairing electron-transfer reactions.  相似文献   

5.
The existing controversy as to whether dicarboxylic anhydride iminolysis by Schiff bases is a concerted [4 + 2] addition or a stepwise reaction following either a Perkin-like route or occurs as iminolysis via zwitterionic intermediates is solved computationally by DFT and MO theory. Both types of theory favor a concerted mechanism starting as bimolecular addition of imine to the carbonyl carbon of anhydride monoenol, accompanied by simultaneous elimination of carboxylate. The reaction proceeds further without forming any intermediate and completes as intramolecular charge transfer from enol HOMO to imine LUMO with ring closure.  相似文献   

6.
Concerted proton and electron transfers (CPET) currently attract considerable theoretical and experimental attention, notably in view of their likely involvement in many enzymatic reactions. The role of carboxylate groups as proton-accepting sites in CPET reactions is explored by means of a cyclic voltammetric investigation of the 2,5-dicarboxy 1,4-benzoquinone/2,5-dicarboxylate 1,4-hydrobenzoquinone couple in a nonaqueous medium. The presence of carboxylate groups ortho to the phenol groups induces the removal of an electron to be coupled with the transfer of the phenolic proton to a carboxylate oxygen. The kinetics of the electrochemical reaction and the observation of a significant hydrogen/deuterium kinetic isotope effect unambiguously indicate that electron transfer and proton transfer are concerted, thus providing an additional demonstration of the role of carboxylate groups as proton-accepting sites in concerted proton-electron transfer reactions.  相似文献   

7.
The concerted and stepwise mechanisms of the hetero-Diels–Alder reaction of butadiene with formaldehyde and thioformaldehyde were studied by a CASSCF molecular orbital method. The energy barrier of the concerted reaction of butadiene with formaldehyde is about 21 kcal/mol higher than that of butadiene with thioformaldehyde at the CAS-MP2 calculation level. For the stepwise reaction paths, the energy barrier for the first step process of the reaction of butadiene with formaldehyde is about 17 kcal/mol above that of butadiene with thioformaldehyde. The concerted pathways for both systems are more favorable by 9–12 kcal/mol than the stepwise pathways. The electronic mechanisms for the concerted reactions of both reaction systems are also discussed by a CiLC analysis.  相似文献   

8.
We demonstrate direct evidence of photoinduced through-space intervalence charge transfer (IVCT) between two cofacially arranged redox-active pairs in metal–organic frameworks and their dynamic variation with their molecular separation. Two homologous MOFs [Co2(NDC)2(DPTTZ)2]. DPTTZ. DMF, 1 and [Co2(BDC)2(DPTTZ)2]. DMF, 2 (where NDC=naphthalene dicarboxylate, BDC=benzene dicarboxylate, DPTTZ=N, N′-di(4-pyridyl)thiazolo-[5,4-d]thiazole, DMF=N, N′-dimethyl formamide) are considered for this, whose intra-dimer distance of redox-active DPTTZ ligands differs ca. 1 Å from one system to another. Spectroelectrochemical study detects the formation of IVCT band at the NIR region between cofacially oriented DPTTZ molecules in both MOFs. Transient spectroscopy shows faster charge separation as well as charge recombination when intra-dimer distance is lesser (in MOF 2 ) due to stronger electronic coupling. We quantify the extent of IVCT by charge transfer integral calculation; and also by optical pump terahertz probe spectroscopy, where MOF 2 shows three times higher carrier mobility due to lesser inter-DPTTZ distance than MOF 1 . These findings reveal a more localized aspect of through-space IVCT between cofacially organized redox-active pair in a three-dimensional framework.  相似文献   

9.
Superoxide ion (O2˙-) forms a stable 1 : 1 complex with scandium hexamethylphosphoric triamide complex [Sc(HMPA)(3)(3+)], which can be detected in solution by ESR spectroscopy. Electron transfer from O2˙- -Sc(HMPA)(3)(3+) complex to a series of p-benzoquinone derivatives occurs, accompanied by binding of Sc(HMPA)(3)(3+) to the corresponding semiquinone radical anion complex to produce the semiquinone radical anion-Sc(HMPA)(3)(3+) complexes. The 1 : 1 and 1 : 2 complexes between semiquinone radical anions and Sc(HMPA)(3)(3+) depending on the type of semiquinone radical anions were detected by ESR measurements. This is defined as Sc(HMPA)(3)(3+)-coupled electron transfer. There are two reaction pathways in the Sc(HMPA)(3)(3+)-coupled electron transfer. One is a stepwise pathway in which the binding of Sc(HMPA)(3)(3+) to semiquinone radical anions occurs after the electron transfer, when the rate of electron transfer remains constant with the change in concentration of Sc(HMPA)(3)(3+). The other is a concerted pathway in which electron transfer and the binding of Sc(HMPA)(3)(3+) occurs in a concerted manner, when the rates of electron transfer exhibit first-order and second-order dependence on the concentration of Sc(HMPA)(3)(3+) depending the number of Sc(HMPA)(3)(3+) (one and two) bound to semiquinone radical anions. The contribution of two pathways changes depending on the substituents on p-benzoquinone derivatives. The present study provides the first example to clarify the kinetics and mechanism of metal ion-coupled electron-transfer reactions of the superoxide ion.  相似文献   

10.
The chalcogeno-Diels-Alder reactions of H(2)C=X (X = S, Se, Te) with butadiene, with trans,trans- and cis,trans-2,4-hexadiene, as well as of ethylene with thio-, seleno-, and telluroacrolein and reactions of thioformaldehyde with thioacrolein are examined theoretically. The B3LYP exchange-correlation functional with the 6-31G(d) and LanL2DZ(d) basis sets is employed. Stepwise diradical and concerted pathways are considered for all reactants. A modified concerted mechanism via a pre-reaction complex followed by a concerted transition state is studied for thioformaldehyde reacting with thioacrolein. The stepwise diradical pathways are predicted to be energetically less favorable than the concerted pathways for all cases considered. Even the sterically hindered reaction between selenoformaldehyde and cis,trans-2,4-hexadiene prefers a concerted path. It is a considerable challenge to reverse this energy preference for the concerted reaction given that both electronic and steric factors act to increase or decrease the activation energies of the concerted and diradical stepwise paths in the same way. A modified concerted mechanism operates for reagents with very small HOMO-LUMO gaps such as thioformaldehyde and thioacrolein. This mechanism is completely synchronous, with a vanishingly small barrier.  相似文献   

11.
A systematic search for reaction pathways for the vinylogous Mannich‐type reaction was performed by the artificial force induced reaction method. This reaction affords δ‐amino‐γ‐butenolide in one pot by mixing 2‐trimethylsiloxyfuran, imine, and water under solvent‐free conditions. Surprisingly, the search identified as many as five working pathways. Among them, two concertedly produce anti and syn isomers of the product. Another two give an intermediate, which is a regioisomer of the main product. This intermediate can undergo a retro‐Mannich reaction to give a pair of intermediates: an imine and 2‐furanol. The remaining pathway directly generates this intermediate pair. The imine and 2‐furanol easily react with each other to afford the product. Thus, all of these stepwise pathways finally converge to give the main product. The rate‐determining step of all five (two concerted and three stepwise) pathways have a common mechanism: concerted Si? O bond formation through the nucleophilic attack of a water molecule on the silicon atom followed by proton transfer from the water molecule to the imine. Therefore, these five pathways have comparable barriers and compete with each other.  相似文献   

12.
The alcoholysis mechanism of 1,2-thiazetidine-1,1-dioxide with methanol, in which the relatively stable product is sulfonate ester, has been investigated by quantum chemical method. Our calculations indicate the reaction for alcoholysis of 1,2-thiazetidine-1,1-dioxide proceeds via two possible mechanisms: concerted and stepwise. In the stepwise mechanism, two possible reaction pathways can be followed while only one possible reaction pathway can be followed in the concerted mechanism.  相似文献   

13.
Mixed-valence chemistry has a long and rich history which is characterised by a strong interplay of experimental, theoretical and computational studies. The intervalence charge transfer (IVCT) transitions generated in dinuclear mixed-valence species (particularly of ruthenium and osmium) have received considerable attention in this context, as they provide a powerful and sensitive probe of the factors which govern electronic delocalisation and the activation barrier to intramolecular electron transfer. This tutorial review discusses classical, semi-classical and quantum mechanical theoretical treatments which have been developed over the past 35 years for the analysis of IVCT absorption bands. Particular attention is drawn to the applicability of these models for the analysis of mixed-valence complexes which lie between the fully localised (Class II) and delocalised (Class III) limits in the "localised-to-delocalised" (Class II-III) regime. A clear understanding of the complex interplay of inter- and intramolecular factors which influence the IVCT process is crucial for the design of experimental studies to probe the localised-to-delocalised regime and in guidance of the development of appropriate theoretical models.  相似文献   

14.
Proton-coupled electron transfer oxidation of phenols play a prominent role in several natural processes, and one may wonder if their high efficiency is related to the possibility that the electron and proton transfer steps are concerted. The cyclic voltammetric observation of the electrochemical oxidation and reverse reaction has allowed, with the example of 2,4,6-tri-tert-butylphenol in nonbuffered aqueous media, the clear identification of a pathway in which a phenol is directly and reversibly converted into the phenoxyl radical while the generated proton is accepted by a water molecule in a concerted manner. In very basic media, a stepwise mechanism takes place in which the phenol is deprotonated by OH- and the resulting phenoxide ion rapidly oxidized into the phenoxyl radical. As the pH decreases, this pathway progressively shuts down to the advantage of the concerted pathway. The latter assignment is confirmed by the observation of a substantial H/D kinetic isotope effect. At moderately basic pH 10.5, the contributions of the two pathways are about equal and the occurrence of the two competing routes is directly visualized in the cyclic voltammetry response.  相似文献   

15.
The thermodynamics and kinetics of NO transfer from S-nitrosotriphenylmethanethiol (Ph(3)CSNO) to a series of alpha,beta,gamma,delta-tetraphenylporphinatocobalt(II) derivatives [T(G)PPCoII], generating the nitrosyl cobalt atom center adducts [T(G)PPCoIINO], in benzonitrile were investigated using titration calorimetry and stopped-flow UV-vis spectrophotometry, respectively. The estimation of the energy change for each elementary step in the possible NO transfer pathways suggests that the most likely route is a concerted process of the homolytic S-NO bond dissociation and the formation of the Co-NO bond. The kinetic investigation on the NO transfer shows that the second-order rate constants at room temperature cover the range from 0.76 x 10(4) to 4.58 x 10(4) M(-1) s(-1), and the reaction rate was mainly governed by activation enthalpy. Hammett-type linear free-energy analysis indicates that the NO moiety in Ph(3)CSNO is a Lewis acid and the T(G)PPCoII is a Lewis base; the main driving force for the NO transfer is electrostatic charge attraction rather than the spin-spin coupling interaction. The effective charge distribution on the cobalt atom in the cobalt porphyrin at the various stages, the reactant [T(G)PPCoII], the transition-state, and the product [T(G)PPCoIINO], was estimated to show that the cobalt atom carries relative effective positive charges of 2.000 in the reactant [T(G)PPCoII], 2.350 in the transition state, and 2.503 in the product [T(G)PPCoIINO], which indicates that the concerted NO transfer from Ph(3)CSNO to T(G)PPCoII with the release of the Ph(3)CS* radical was actually performed by the initial negative charge (-0.350) transfer from T(G)PPCoII to Ph(3)CSNO to form the transition state and was followed by homolytic S-NO bond dissociation of Ph(3)CSNO with a further negative charge (-0.153) transfer from T(G)PPCoII to the NO group to form the final product T(G)PPCoIINO. It is evident that these important thermodynamic and kinetic results would be helpful in understanding the nature of the interaction between RSNO and metal porphyrins in both chemical and biochemical systems.  相似文献   

16.
The problem of competition between concerted and stepwise diradical mechanisms in 1,3-dipolar cycloadditions was addressed by studying the reaction between nitrone and ethene with DFT (R(U)B3LYP/6-31G) and post HF methods. According to calculations this reaction should take place via the concerted cycloaddition path. The stepwise process is a viable but not competitive alternative. The R(U)B3LYP/6-31G study was extended to the reaction of the same 1, 3-dipole with cyclobutadiene and benzocyclobutadiene. The very reactive antiaromatic cyclobutadiene has an electronic structure that is particularly disposed to promote stepwise diradical pathways. Calculations suggest that its reaction with nitrone represents a borderline case in which the stepwise process can compete with the concerted one on similar footing. Attenuation of the antiaromatic character of the dipolarophile, i.e., on passing from cyclobutadiene to benzocyclobutadiene, causes the concerted 1,3-dipolar cycloaddition to become once again prevalent over the two-step path. Thus, our results suggest that, in 1,3-dipolar cycloadditions that involve normal dipolarophiles, the concerted path (Huisgen's mechanism) should clearly overwhelm its stepwise diradical (Firestone's mechanism) counterpart.  相似文献   

17.
金鹿  吴勇  薛英  郭勇  谢代前  鄢国森 《化学学报》2006,64(9):873-878
采用密度泛函理论方法B3LYP/6-31G(d,p)研究了甲酸苯酯与氨在气相中的反应机理. 考虑了两条可能的反应途径: 中性协同的和中性分步的机理. 采用自洽反应场极化连续模型(CPCM模型)研究了反应体系在水、乙醇和乙腈溶液中反应的溶剂化效应. 计算结果表明气相和溶液中协同机理均是最优途径. 水、乙醇和乙腈溶剂可降低协同途径的活化能, 溶剂化效应的大小对溶剂的极性不敏感.  相似文献   

18.
The potential energy surfaces of the ene reactions of propene and cyclopropene with ethylene and cyclopropene were studied by ab initio molecular orbital (MO) methods. The reaction mechanisms were analyzed by CiLC method on the basis of CASSCF MOs. The concerted and stepwise reaction pathways of the ene reaction of propene with ethylene as the parent reaction were located. The energy barrier of the stepwise process is about 4 kcal/mol lower than that of the concerted one. The other reactions can be found only the stepwise mechanism. Although the endo-type reaction of propene with cyclopropene, where cyclopropene is the enophile, probably occurs through a one-step process, the mechanism is divided into the CC bond formations and the hydrogen migration as a stepwise reaction. The CiLC-IRC analysis of the concerted process of propene with ethylene shows the different patterns of the electronic state variation for the CC bond formation/breaking and the hydrogen migration.  相似文献   

19.
Excited‐state double proton transfer (ESDPT) in the (3‐methyl‐7‐azaindole)‐(7‐azaindole) heterodimer is theoretically investigated by the long‐range corrected time‐dependent density functional theory method and the complete‐active‐space second‐order perturbation theory method. The calculated potential energy profiles exhibit a lower barrier for the concerted mechanism in the locally excited state than for the stepwise mechanism through the charge‐transfer state. This result suggests that the ESDPT in the isolated heterodimer is likely to follow the former mechanism, as has been exhibited for the ESDPT in the homodimer of 7‐azaindole. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
In this paper, the mechanisms of the intermolecular [3+2] and [1+2] cycloaddition reactions of 1,1/1,3-dipolar π-delocalized singlet vinylcarbenes, which is obtained from cyclopropenone, with an electron-deficient C═O or C═C dipolarophile, to generate five-membered ring products are first disclosed by the density functional theory (DFT). Four reaction pathways, including two concerted [3+2] cycloaddition reaction pathways and two stepwise reaction pathways (an initial [1+2] cycloaddition and then a rearrangement from the [1+2] cycloadducts to the final [3+2] cycloadducts), are investigated at the B3LYP/6-31G(d,p) level of theory. The calculated results reveal that, in contrast to the concerted C═O [3+2] cycloaddition reaction pathway, which is 7.1 kcal/mol more energetically preferred compared with its stepwise reaction pathway, the C═C dipolarophile favors undergoing [1+2] cycloaddition rather than concerted [3+2] cycloaddition (difference of 5.3 kcal/mol). The lowest free energy barrier of the C═O concerted [3+2] cycloaddition reaction pathway shows that it predominates all other reaction pathways. This observation is consistent with the finding that the C═O [3 + 2] cycloadduct is the main product under experimental conditions. In addition, natural bond orbital second-order perturbation charge analyses are carried out to explain the preferred chemoselectivity of C═O to the C═C dipolarophile and the origins of cis-stereoselectivity for C═C [1+2] cycloaddition. Solvent effects are further considered at the B3LYP/6-31G(d,p) level in the solvents CH(3)CN, DMF, THF, CH(2)Cl(2), toluene, and benzene using the PCM model. The results indicate that the relative reaction trends and the main products are insensitive to the polarity of the reaction solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号