首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this article, we investigate the effect of van der Waals force in zigzag carbon nanotubes (CNTs) including single-wall CNT (SWCNT) and double-walled CNT (DWCNT) structures with several interaction configurations. The solid-state density functional theory is employed to calculate the geometric optimization, normal mode frequencies, and IR and Raman spectra with the periodic boundary condition. For SWCNTs, we find that the Raman intensity is not affected by the tube diameter or the electronic structure. The IR absorption, however, increases with the tube diameter. We find that the close metallicity of the electronic structure has a significant impact on the IR simulations. When the van der Waals force is applied outside the CNTs at a distance longer than 3.0, the effect on Raman spectra is minimal but some effects can still be confirmed by IR absorption. When the van der Waals force acts inside the CNTs, the effect on the spectrum can be observed, especially at a distance of 2.8 Å, both IR and Raman can be significantly enhanced in many modes.  相似文献   

2.
The van der Waals (dispersion) interaction between an atom and a cluster or between two clusters at large separation is calculated by considering each cluster as a point particle, characterized by a polarizability tensor. For the extreme limit of very large separation, the fully retarded regime, one needs to know just the static polarizability in order to determine the interaction. This polarizability is evaluated by including all many-body (MB) intracluster atomic interactions self-consistently. The results of these calculations are compared with those obtained from various alternative methods. One is to consider each cluster as a collection of many atoms and evaluate the sum of two-body interatomic interactions, a common assumption. An alternative method is to include three-body atomic interactions as a MB correction term in the total energy. A comparison of these results reveals that the contribution of the higher-than-three-body MB interactions is always attractive and non-negligible even at such a large separation, in contrast to common assumptions. The procedure employed is quite general and is applicable, in principle, to any shape or size of dielectric cluster. We present numerical results for clusters composed of atoms with polarizability consistent with silica, for which the higher-than-three-body MB correction term can be as high as 42% of the atomic pairwise sum. This result is quite sensitive to the anisotropy and orientation of the cluster, in contrast to the result found in the additive case. We also present a power law expansion of the total van der Waals interaction as a series of n-body interaction terms.  相似文献   

3.
A linear response time-dependent density functional theory is described and used to calculate the dynamic polarizabilities and van der Waals C(6) coefficients of complex atom pairs. We present values of C(6) for dimers of main group atoms and the first row of transition metal atoms.  相似文献   

4.
In this paper we employ all-electron ab initio time-dependent density functional theory based method to calculate the long range dipole-dipole dispersion coefficient (van der Waals coefficient) C(6) of sodium atom clusters containing even number of atoms ranging from 2 to 20 atoms. The dispersion coefficients are obtained via Casimir-Polder relation [Phys. Rev. 3, 360 (1948)]. The calculations are carried out with two different exchange-correlation potentials: (i) the asymptotically correct statistical average of orbital potential (SAOP) and (ii) Vosko-Wilk-Nusair representation [Can. J. Phys. 58, 1200 (1980)] of exchange-correlation potential within local density approximation. A comparison with the other theoretical results has been performed. We also present the results for the static polarizabilities of sodium clusters and also compare them with other theoretical and experimental results. These comparisons reveal that the SAOP results for C(6) and static polarizability are quite accurate and very close to the experimental results. We examine the relationship between volume of the cluster and van der Waals coefficient, and find that to a very high degree of correlation C(6) scales as the square of the volume. We also present the results for van der Waals coefficient corresponding to cluster-Ar atom and cluster-N(2) molecule interactions.  相似文献   

5.
In this work we show how the ab initio determination of van der Waals coefficients within time-dependent density functional theory can be used to build efficient and accurate atomistic models that describe the long-range interactions of proteins with other proteins and of proteins with semi-conducting surfaces. The model parameters are fitted so that they reproduce the ab initio van der Waals coefficients of amino acids and dipeptides. We then assess the quality of our results by comparing ab initio van der Waals coefficients for larger peptides with the coefficients yielded by the models. The different sets of parameters can be easily incorporated in current empirical force field methods, thus providing an essential ingredient for molecular dynamics simulations of proteins close to surfaces.  相似文献   

6.
An empirical method to account for van der Waals interactions in practical calculations with the density functional theory (termed DFT-D) is tested for a wide variety of molecular complexes. As in previous schemes, the dispersive energy is described by damped interatomic potentials of the form C6R(-6). The use of pure, gradient-corrected density functionals (BLYP and PBE), together with the resolution-of-the-identity (RI) approximation for the Coulomb operator, allows very efficient computations for large systems. Opposed to previous work, extended AO basis sets of polarized TZV or QZV quality are employed, which reduces the basis set superposition error to a negligible extend. By using a global scaling factor for the atomic C6 coefficients, the functional dependence of the results could be strongly reduced. The "double counting" of correlation effects for strongly bound complexes is found to be insignificant if steep damping functions are employed. The method is applied to a total of 29 complexes of atoms and small molecules (Ne, CH4, NH3, H2O, CH3F, N2, F2, formic acid, ethene, and ethine) with each other and with benzene, to benzene, naphthalene, pyrene, and coronene dimers, the naphthalene trimer, coronene. H2O and four H-bonded and stacked DNA base pairs (AT and GC). In almost all cases, very good agreement with reliable theoretical or experimental results for binding energies and intermolecular distances is obtained. For stacked aromatic systems and the important base pairs, the DFT-D-BLYP model seems to be even superior to standard MP2 treatments that systematically overbind. The good results obtained suggest the approach as a practical tool to describe the properties of many important van der Waals systems in chemistry. Furthermore, the DFT-D data may either be used to calibrate much simpler (e.g., force-field) potentials or the optimized structures can be used as input for more accurate ab initio calculations of the interaction energies.  相似文献   

7.
Density functional theory with the van der Waals density functional (vdW-DF) is used to calculate equilibrium crystal structure, binding energy, and bulk modulus of ice Ih. It is found that although it overestimates the equilibrium volume, vdW-DF predicts accurate binding energy of ice Ih, as compared with high level quantum chemistry calculations and experiment. Inclusion of the nonlocal correlation, i.e., van der Waals interaction, leads to an overall improvement over the standard generalized gradient approximation in describing water ice.  相似文献   

8.
We devise a nonlocal correlation energy functional that describes the entire range of dispersion interactions in a seamless fashion using only the electron density as input. The new functional is considerably simpler than its predecessors of a similar type. The functional has a tractable and robust analytic form that lends itself to efficient self-consistent implementation. When paired with an appropriate exchange functional, our nonlocal correlation model yields accurate interaction energies of weakly-bound complexes, not only near the energy minima but also far from equilibrium. Our model exhibits an outstanding precision at predicting equilibrium intermonomer separations in van der Waals complexes. It also gives accurate covalent bond lengths and atomization energies. Hence the functional proposed in this work is a computationally inexpensive electronic structure tool of broad applicability.  相似文献   

9.
10.
van der Waals interactions between nanoclusters have been calculated with a self-consistent, coupled dipole method. The method accounts for all many-body (MB) effects. Comparison is made between the exact potential energy, V, and the values obtained with two alternative methods: the sum of two-body interactions and the sum of two-body and three-body interactions. For all cases considered, the three-body term alone does not accurately represent the MB contributions to V. MB contributions are especially large for shape-anisotropic clusters.  相似文献   

11.
12.
Nearly all common density functional approximations fail to properly describe dispersion interactions responsible for binding in van der Waals complexes. Empirical corrections can fix some of the failures but cannot fully grasp the complex physics and may not be reliable for systems dissimilar to the fitting set. In contrast, the recently proposed nonlocal van der Waals density functional (vdW-DF) was derived from first principles, describes dispersion interactions in a seamless fashion, and yields the correct asymptotics. Implementation of this functional is somewhat cumbersome: Nonlocal dependence on the electron density requires numerical double integration over the space variables and functional derivatives are nontrivial. This paper shows how vdW-DF can be implemented self-consistently with Gaussian basis functions. The gradients of the energy with respect to nuclear displacements have also been derived and coded, enabling efficient geometry optimizations. We test the vdW-DF correlation functional in combination with several exchange approximations. We also study the sensitivity of the method to the basis set size and to the quality of the numerical quadrature grid. For weakly interacting systems, acceptable accuracy in semilocal exchange is achieved only with fine grids, whereas for nonlocal vdW-DF correlation even rather coarse grids are sufficient. The current version of vdW-DF is not well suited for pairing with Hartree-Fock exchange, leading to considerable overbinding.  相似文献   

13.
In this article we present a method for the study of shapes of general, asymmetric van der Waals surfaces. The procedure is simple to apply and it consists of two steps. First, the surface is decomposed into spherical domains, according to the interpenetration of the van der Waals atomic spheres. Each domain defines a topological object that is either a 2-manifold or some truncated 2-manifold. Second, we compute the homology groups for all the objects into which the surface is divided. These groups are topological and homotopical invariants of the domains, hence they remain invariant to conformational changes that preserve the essential features of these domains of decomposition. In particular, these homology groups do not depend explicitly on the molecular symmetry. Major rearrangements of the nuclear configurations, however, do alter the decomposition into spherical domains, and the corresponding variation of the homology groups can be followed easily under conformational rearrangements. We discuss a partitioning of the metric internal configuration spaceM into shape regions of van der Waals surfaces, which allows one to identify those rearrangements which introduce an essential change in shape and to distinguish them from those which do not alter the fundamental shape of the molecular surface. The dependence of the shape group partitioning ofM on the symmetry under permutation of nuclear changes is discussed briefly, considering a simple illustrative example.  相似文献   

14.
We study the mutual interactions of simple parallel polymers within the framework of density-functional theory (DFT). As the conventional implementations of DFT do not treat the long-range dispersion [van der Waals (vdW)] interactions, we develop a systematic correction scheme for the nonlocal energy contribution of the polymer interaction at the intermediate to the asymptotic separations. We primarily focus on the three polymers, polyethylene, isotactic polypropylene, and isotactic polyvinylchloride, but the scheme presented applies also more generally to other simple polymers. From first-principle calculations we extract the geometrical and electronic structures of the polymers and the local part of their interaction energy, as well as the static electric response. The dynamic electrodynamic response is modeled on the basis of these static calculations, from which the nonlocal vdW interaction of the polymers is extracted.  相似文献   

15.
We present and discuss a variational single-product approximation to the van der Waals dispersion interaction leading to a simple formula for C 6 that seems capable to give more than 99% of the ‘exact’ value. The formula is derived from Hylleraas’ variational principle in the tensor product space of the interacting molecules and therefore enjoys bounding properties. The formula has been tested by computing the C 6 dispersion constants of H–H, and, at Full CI level, of the following systems: He–He, He–Li, Li–Li, LiH–LiH, HF–HF. Connections with the London formula are discussed. Contribution to the Fernando Bernardi Memorial Issue.  相似文献   

16.
Dispersion forces, which originate the van der Waals interaction, are indispensable to describe numerous systems and processes, including metallic clusters and surfaces. In this work is used an efficient numerical implementation in the context of density functional theory of a non-local correlation van der Waals density functional (vdW-DF) to self-consistently solve the structure and electronic properties of small molecules (ArAu, AuF, ArAuF, ArCuF, Au(2)Hg, Au(2)Hg(2)), as well as Au(2-15) and Hg(2-6) clusters. Three different flavours of that vdW-DF exchange-correlation (xc) functional are tested. The results for small molecules are compared with those from the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) against experiments or highly accurate quantum chemical calculations. It is found that, on average, vdw-DF improves PBE binding energies and overestimates bond distances. Our vdW-DF calculations lead to planar structures as lowest energy isomers of Au(14) and Au(15) clusters. The calculated polarizability of Au(2-15) isomers dramatically decreases in passing from two-dimensional (2D) to three-dimensional (3D) equilibrium geometries. A combination of the density of states of two vdw-DF planar isomers of the Au(12)(-) anion is proposed to explain the photoelectron spectroscopy experiments. Contrary to PBE results, the vdW-DF calculations predict that the O(h) isomer of Hg(6) is more stable than the C(2v) one.  相似文献   

17.
An extended version of the van der Waals capillarity theory describing the liquid-vapor interface in the temperature range from the triple to the critical point is suggested. A model functional of thermodynamic potential for a two-phase Lennard-Jones system taking into account the effect of the highest degree terms of gradient expansion has been constructed. The identity of the thermodynamic and the mechanical definition of Tolman's length has been proved in the framework of the adopted form of functional. The properties of nuclei of the liquid and the vapor phase are described. The paper determines: the work of formation of a nucleus, density profiles, size dependences of the surface tension, and the parameter delta in the Gibbs-Tolman-Koenig-Buff equation.  相似文献   

18.
19.
The van der Waals dispersion coefficients of a set of polycyclic aromatic hydrocarbons, ranging in size from the single-cycle benzene to circumovalene (C(66)H(20)), are calculated with a real-time propagation approach to time-dependent density functional theory (TDDFT). In the nonretarded regime, the Casimir-Polder integral is employed to obtain C(6), once the dynamic polarizabilities have been computed at imaginary frequencies with TDDFT. On the other hand, the numerical coefficient that characterizes the fully retarded regime is obtained from the static polarizabilities. This ab initio strategy has favorable scaling with the size of the system--as demonstrated by the size of the reported molecules--and can be easily extended to obtain higher order van der Waals coefficients.  相似文献   

20.
We use density functional theory calculations with van der Waals corrections to study the role of dispersive interactions on the structure and binding of CO(2) within two distinct metal-organic frameworks (MOFs): Mg-MOF74 and Ca-BTT. For both classes of MOFs, we report calculations with standard gradient-corrected (PBE) and five van der Waals density functionals (vdW-DFs), also comparing with semiempirical pairwise corrections. The vdW-DFs explored here yield a large spread in CO(2)-MOF binding energies, about 50% (around 20 kJ/mol), depending on the choice of exchange functional, which is significantly larger than our computed zero-point energies and thermal contributions (around 5 kJ/mol). However, two specific vdW-DFs result in excellent agreement with experiments within a few kilojoules per mole, at a reduced computational cost compared to quantum chemistry or many-body approaches. For Mg-MOF74, PBE underestimates adsorption enthalpies by about 50%, but enthalpies computed with vdW-DF, PBE+D2, and vdW-DF2 (40.5, 38.5, and 37.4 kJ/mol, respectively) compare extremely well with the experimental value of 40 kJ/mol. vdW-DF and vdW-DF2 CO(2)-MOF bond lengths are in the best agreement with experiments, while vdW-C09(x) results in the best agreement with lattice parameters. On the basis of the similar behavior of the reduced density gradients around CO(2) for the two MOFs studied, comparable results can be expected for CO(2) adsorption in BTT-type MOFs. Our work demonstrates for this broad class of molecular adsorbate-periodic MOF systems that parameter-free and computationally efficient vdW-DF and vdW-DF2 approaches can predict adsorption enthalpies with chemical accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号