首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross section data for electron scattering from DNA are important for modelling radiation damage in biological systems. Triply differential cross sections for the electron impact ionization of the highest occupied outer valence orbital of tetrahydrofurfuryl alcohol, which can be considered as an analogue to the deoxyribose backbone molecule in DNA, have been measured using the (e,2e) technique. The measurements have been performed with coplanar asymmetric kinematics at an incident electron energy of 250 eV, an ejected electron energy of 20 eV, and at scattered electron angles of -5°, -10°, and -15°. Experimental results are compared with corresponding theoretical calculations performed using the molecular 3-body distorted wave model. Some important differences are observed between the experiment and calculations.  相似文献   

2.
Triple differential cross sections for the electron-impact ionization of the outer valence orbital of tetrahydrofuran have been measured using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and at an ejected electron energy of 10 eV, over a range of momentum transfers. The experimental results are compared with theoretical calculations carried out using the molecular three-body distorted wave model. The results obtained are important for gaining an understanding of electron driven processes at a molecular level and for modeling energy deposition in living tissue.  相似文献   

3.
Single and double differential ionization cross sections for the production of ions resulting from dissociative, single and double ionization of SF(6) by electron impact have been calculated using a semiempirical formulation based on the Jain-Khare approach. In addition, triple differential cross sections have been obtained for some of the doubly charged fragment ions at an incident electron energy of 100, 150, and 200 eV, respectively, and a fixed scattering angle of 30 degrees. As no previous data seem to exist for differential cross sections we have derived from these differential cross sections corresponding partial and total ionization cross sections from threshold up to 900 eV and compared those with the available theoretical and experimental data.  相似文献   

4.
In this paper, we present a theoretical approach to calculate differential and total ionization cross sections of polyatomic molecules by fast electron impact. More exactly, we have studied the ionization of ammonia (NH(3)) and methane (CH(4)) molecules, and previous results concerning the H(2)O molecule ionization are reported for comparison. The calculations are performed in the distorted wave Born approximation without exchange by employing the independent electron model. The molecular target wave functions are described by linear combinations of atomic orbitals. To describe the interaction between the inactive target electrons and the slow ejected electron, we have introduced a distortion via an effective potential calculated for each molecular orbital. The present theoretical calculations agree well with a large set of existing experimental data in terms of multiple differential and total cross sections.  相似文献   

5.
Triple differential cross sections have been measured in the vicinity of the (2s 2)1 S autoionising state of helium, following impact by 200 eV electrons. The scattered electron detector was set at an angle of ?12° (anti-clockwise) and the forward and backward ejected electron angular ranges scanned. The direct ionisation cross section at an ejected electron energy of 33.5 eV has been obtained and the results for the resonant ionisation of the1 S state are presented in the Shore/Balashov parametrisation. These measurements are compared with previous experimental data and emphasise the need for new detailed theoretical calculations on the autoionisation process.  相似文献   

6.
We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.  相似文献   

7.
The absolute total ionization cross sections from threshold to 250 eV and dissociative attachment cross sections from zero to 10 eV have been measured for the CCl2F2 (dichloro-difluoro-methane) molecule by using a parallel plate condenser type ionization chamber. The maximum of the ionization cross-section curve was found to be at an energy of about 90 eV with a cross section of 1.44 × 10?19 m2. The attachment cross-section curve shows three peaks, the most intense being at zero electron energy with a cross-section value of 1.80 × 10?20 m2, and the other two at energies of 0.6 eV and 3.5 eV, respectively. The maximal relative error in cross-section values is 0.08, for electron energies larger than 0.4 eV.  相似文献   

8.
The triple differential cross sections for electron impact ionization of helium in a symmetric coplanar energy-sharing geometry at incident energies from 45–500 eV and an angle of 45° are calculated by use of the modified BBK model. A comparison with other theoretical results has been performed. It has been found that the present results give an excellent agreement with the absolute experimental measurement for the energy range considered.  相似文献   

9.
Currently there are no reliable theoretical approaches for calculating fully differential cross sections (FDCSs) for low-energy electron-impact ionization of large molecules. We have recently proposed the orientation-averaged molecular orbital (OAMO) for calculating cross sections averaged over molecular orientations. In this paper, we use the OAMO to calculate distorted wave Born approximation (DWBA) and molecular three-body distorted wave (M3DW) Born approximation FDCS for electron-impact ionization of the nitrogen molecule. Both coplanar symmetric and asymmetric FDCSs are investigated in the energy range of 35.6-400 eV. By comparing with the experimental data, we found that the M3DW is reasonably accurate in this energy range. We also found that the postcollision interaction plays a sufficiently important role and that the DWBA is not reliable.  相似文献   

10.
The extensive study of outer- and inner-valence satellites of carbon dioxide by electron momentum spectroscopy is reported. The experiments have been performed using a high-sensitivity electron momentum spectrometer employing non-coplanar symmetric geometry at impact energy of about 1200 eV. Binding energy spectrum up to 50 eV, above the first double ionization threshold (~37.3 eV), is presented. Four main peaks and twelve satellites have been identified including four embedded in the double ionization continuum, among which the two beyond 42 eV are observed for the first time. High accuracy symmetry-adapted-cluster configuration interaction general-R calculation with aug-cc-pVTZ basis sets has also been performed and the result is in line with the experimental ionization spectrum except the relative intensities for some of the satellites in inner-valence region. The experimental momentum profiles for both the main ionization transitions and satellites have been obtained and compared with theoretical calculations by HF and B3LYP methods with 6-311++G? and aug-cc-pVTZ basis sets. Through comparison, the detailed assignments of the satellite bands have been achieved and the pole strengths for the relevant shake-up transitions are determined experimentally for the first time.  相似文献   

11.
Low energy experimental and theoretical triply differential cross sections are presented for electron impact ionization of methane (CH(4)) for both the highest occupied molecular orbital (HOMO) and next highest occupied molecular orbital (NHOMO). The HOMO is a predominantly p-type orbital which is labeled 1t(2) and the NHOMO is predominantly s-type labeled 2a(1). Coplanar symmetric (symmetric both in final state electron energies and observation angles) are presented for final state electron energies ranging from 2.5 to 20 eV. The theoretical M3DW (molecular three-body distorted wave) results are in surprisingly good agreement with experiment for the HOMO state and less satisfactory agreement for the NHOMO state. The molecular NHOMO results are also compared with the ionization of the 2s shell of neon which is the isoelectronic atom.  相似文献   

12.
Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.  相似文献   

13.
Using a Nier-type electron impact ion source in combination with a double focusing two sector field mass spectrometer, partial cross sections for electron impact ionization of acetylene are measured for electron energies up to 1000 eV. Discrimination factors for ions are determined using the deflection field method in combination with a three-dimensional ion trajectory simulation of ions produced in the ion source. Analysis of the ion yield curves obtained by scanning the deflectors allows the assignment of ions with the same mass-to-charge ratio to specific production channels on the basis of their different kinetic energy distributions. This analysis also allows to determine, besides kinetic energy distributions of fragment ions, partial cross sections differential in kinetic energy. Moreover a charge separation reaction, the Coulomb explosion of the doubly charged parent ions C2H2++ into the fragment ions C2H+ and H+, is investigated and its mean kinetic energy release (KER=3.88 eV) is deduced.  相似文献   

14.
Neutral silver atoms and small clusters Ag n (n=1...4) were generated by sputtering, i.e. by bombarding a polycrystalline silver surface with Ar+ ions of 5 keV. The sputtered particles were ionized by a crossed electron beam and subsequently detected by a quadrupole mass spectrometer. In alternative to the electron impact ionization, the same neutral species were also ionized by single photon absorption from a pulsed VUV laser (photon energy 7.9 eV), and the photoionization cross sections were evaluated from the laser intensity dependence of the measured signals. By in situ combining both ionization mechanisms, absolute values of the ratio σ e (Ag n )/σ e (Ag) between the electron impact ionization cross sections of silver clusters and atoms could be determined for a fixed electron energy of 46 eV. These values can then be used to calibrate previously measured relative ionization functions. By calibrating the results using literature data measured for silver atoms, we present absolute cross sections for electron impact ionization of neutral Ag2, Ag3 and Ag4 as a function of the electron energy between threshold and 125 eV.  相似文献   

15.
The absolute cross sections (CSs) for electronic excitations of cytosine by electron impact between 5 and 18 eV were measured by electron-energy-loss (EEL) spectroscopy of the molecule deposited at low coverage on an inert Ar substrate. The lowest EEL features found at 3.55 and 4.02 eV are ascribed to transitions from the ground state to the two lowest triplet 1?(3)A(')(π→π(?)) and 2?(3)A(')(π→π(?)) valence states of the molecule. Their energy dependent CSs exhibit essentially a common maximum at about 6 eV with a value of 1.84×10(-17)?cm(2) for the former and 4.94×10(-17)?cm(2) for the latter. In contrast, the CS for the next EEL feature at 4.65 eV, which is ascribed to the optically allowed transition to the 2?(1)A(')(π→π(?)) valence state, shows only a steep rise to about 1.04×10(-16)?cm(2) followed by a monotonous decrease with the incident electron energy. The higher EEL features at 5.39, 6.18, 6.83, and 7.55 eV are assigned to the excitations of the 3?(3,1)A(')(π→π(?)), 4?(1)A(')(π→π(?)), 5?(1)A(')(π→π(?)), and 6?(1)A(')(π→π(?)) valence states, respectively. The CSs for the 3?(3,1)A(') and 4?(1)A(') states exhibit a common enhancement at about 10 eV superimposed on a more or less a steep rise, reaching, respectively, a maximum of 1.27 and 1.79×10(-16)?cm(2), followed by a monotonous decrease. This latter enhancement and the maximum seen at about 6 eV in the lowest triplet states correspond to the core-excited electron resonances that have been found by dissociative electron attachment experiments with cytosine in the gas phase. The weak EEL feature found at 5.01 eV with a maximum CS of 3.8×10(-18)?cm(2) near its excitation threshold is attributed to transitions from the ground state to the 1?(3,1)A(")(n→π(?)) states. The monotonous rise of the EEL signal above 8 eV is attributed to the ionization of the molecule. It is partitioned into four excitation energy regions at about 8.55, 9.21, 9.83, and 11.53 eV, which correspond closely to the ionization energies of the four highest occupied molecular orbitals of cytosine. The sum of the ionization CS for these four excitation regions reaches a maximum of 8.1×10(-16)?cm(2) at the incident energy of 13 eV.  相似文献   

16.
We report electron impact total cross sections, Q(T), for e-N(2)O scattering over an extensive range of impact energies approximately from 0.1 eV to 2000 eV. We employ an ab initio calculation using R-matrix formalism below the ionization threshold of the target and above it we use the well established spherical complex optical potential to compute the cross sections. Total cross section is obtained as a sum of total elastic and total electronic excitation cross sections below the ionization threshold and above the ionization threshold as a sum of total elastic and total inelastic cross sections. Ample cross section data for e-N(2)O scattering are available at low impact energies and hence meaningful comparisons are made. Good agreement is observed with the available theoretical as well as experimental results over the entire energy range studied here.  相似文献   

17.
Charge stripping (CS) of the molecular ion of toluene, C(7)H(8) (+)-->C(7)H(8) (2+)+e, is often used as a reference for the determination of second ionization energies in energy-resolved CS experiments. For calibration of the kinetic energy scale, a value of IE(C(7)H(8) (+))=(15.7+/-0.2) eV derived from the appearance energy of the toluene dication upon electron ionization has been accepted generally. Triggered by some recent discrepancies between CS measurements on the one hand and different experimental methods as well as theoretical predictions on the other, we have reinvestigated the photon-induced double ionization of toluene using synchrotron radiation. These photoionization measurements yield phenomenological appearance energies of AE(C(7)H(8) (+))=(8.81+/-0.03) eV for the monocation and AE(C(7)H(8) (2+))=(23.81+/-0.06) eV for the dication. The former is in good agreement with a much more precise spectroscopic value, IE(C(7)H(8))=(8.8276+/-0.0006) eV. Explicit consideration of the Franck-Condon envelopes associated with photoionization to the dication in conjunction with the application of the Wannier law leads to an adiabatic ionization energy IE(a)(C(7)H(8) (+))=(14.8+/-0.1) eV, which is as much as 0.9 eV lower than the previous value derived from electron ionization. Because in many previous CS measurements the transition C(7)H(8) (+)-->C(7)H(8) (2+)+e was used as a reference, the energetics of several gaseous dications might need some readjustment.  相似文献   

18.
A special xenon matrix detector has been used to study the production of S(1S) following controlled electron impact on thiophosgene (Cl2CS) targets over an electron energy range from threshold to 400 eV. Time-of-flight spectroscopy has been used to measure S(1S) fragment kinetic energies. Fragments with energies in excess of 1 eV have been observed. The absolute cross section for S(1S) production reaches a maximum of [1.05+/-0.35] x 10(-18) cm2 at approximately 125 eV impact energy. Two different fragmentation processes, involving triplet and singlet excited states of the parent Cl2CS molecule, have been identified.  相似文献   

19.
The partial ionization cross section for the formation of SF(3) (+) fragment ions following electron impact on SF(6) is known to have a pronounced structure in the cross section curve slightly above 40 eV. We used the mass-analyzed ion kinetic energy (MIKE) scan technique to demonstrate the presence of a channel contributing to the SF(3) (+) partial ionization cross section that we attribute to the Coulomb explosion of doubly charged metastable SF(4) (2+) ions into two singly charged ions SF(3) (+) and F(+), with a threshold energy of about 45.5 eV. Thus the observed unusual shape of the SF(3) (+) partial ionization cross section is the result of two contributions, (i) the direct formation of SF(3) (+) fragment ions via dissociative ionization of SF(6) with a threshold energy of 22 eV and (ii) the Coulomb explosion of metastable SF(4) (2+) ions with a threshold energy of about 45.5 eV. A detailed analysis of the MIKE spectrum reveals an average kinetic energy release of about 5 eV in the Coulomb explosion of the SF(4) (2+) ions with evidence of a second channel corresponding to an average kinetic energy release of about 1.1 eV.  相似文献   

20.
We present theoretical elastic and electronic excitation cross sections and experimental electronic excitation cross sections for electron collisions with pyrimidine. We use the R-matrix method to determine elastic integral and differential cross sections and integral inelastic cross sections for energies up to 15 eV. The experimental inelastic cross sections have been determined in the 15-50 eV impact energy range. Typically, there is quite reasonable agreement between the theoretical and experimental integral inelastic cross sections. Calculated elastic cross sections agree very well with prior results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号