共查询到10条相似文献,搜索用时 15 毫秒
1.
在噪声来自于多个方向的普通房间中,通过立体结构的虚拟声屏障(Virtual Sound Barrier,VSB)系统能够产生比人头大的静区。实际应用中人头处于系统包围的静区内,必须考虑人头的散射作用对系统的影响。数值模拟表明,由于人头的散射作用,在人头附近,声压降低量分布更为均匀,系统性能可能变好也可能变坏,与误差传感器包围区域的半径及噪声频率有关。系统性能随系统物理配置的变化趋势,与未引入人头时是一致的。人头可以在系统包围的静区内移动,随着人头偏离系统中心,降噪效果会下降,但即使人头偏离至系统包围静区的边缘,仍有10 dB以上的降噪。实验给出一种实用的圆柱状分布的16通道的VSB系统,引入人头后系统性能变好了。当人头在该系统包围的静区内移动时,即使频率达到500 Hz,降噪效果最差仍达13.3 dB。 相似文献
2.
3.
有源声屏障中误差传感器的位置优化 总被引:3,自引:2,他引:1
有源声屏障利用有源控制系统提高声屏障低频段的降噪效果。有源控制系统中误差传感器的位置对整个系统的降噪效果有较大的影响。通过数值模拟和实验研究误差传感器的位置优化问题,得出了有源控制系统中误差传感器摆放位置的两条结论:(1)所介绍的三种摆放中,误差传感器的位置在次级声源的正上方时,有源控制系统在屏障后方声影区引入的新增插入损失最好,特别是对于距离屏障较远的区域;(2)当误差传感器的位置在次级声源的正上方时,误差传感器与次级声源间的距离存在一个最优距离使得屏障后方声影区的衍射声得到最好的降低。 相似文献
4.
5.
高架桥声屏障高度对列车气动特性影响的数值模拟 总被引:2,自引:0,他引:2
采用计算流体力学方法对高架桥声屏障高度影响高速列车空气动力特性进行数值研究.通过网格划分、湍流模型选取、边界条件设置等来提高数值计算精度.结果表明,当高速列车运行在下风向时,头车、中间车上的侧向力随着声屏障高度增加而逐渐下降.头车所受的侧翻力矩在整车中最大,且随着声屏障高度的增加而逐渐减小.随着声屏障高度的增加,上风向工况下中间车受到的侧翻力矩要大于下风向工况.上、下风向工况下高速列车气动特性差异主要是由于流动空腔中列车所处的相对位置不同,改变了车体表面的压力分布,从而改变了车体所受到的气动力、力矩. 相似文献
6.
针对开口房间内的变压器,在开口处布放若干扬声器和误差传声器构成虚拟声屏障,实验研究了虚拟声屏障对通过开口向外辐射的低频线谱噪声的控制效果。将15个次级源近似均匀分布在面积为2 m′ 2.7 m的开口面上,左右间距约58.5 cm、上下间距45-65 cm,15个误差传声器分别位于对应的次级源正前方1 m,系统采用自适应谐波降噪算法。结果表明:虚拟声屏障系统在误差点100 Hz、200 Hz和300 Hz的平均降噪量分别达到12.7 dB、19.9 dB和22.2 dB,虚拟声屏障对100 Hz、200 Hz、300 Hz线谱噪声的控制效果与单层封闭窗户相当,且内部合成参考信号,无需外接参考传声器。采用虚拟声屏障对开口房间内的变压器降噪的好处是实现室内外的自然通风,便于变压器的散热。 相似文献
7.
8.
9.
非线性声流旋涡在加速热、质传输过程和清除固体表面积灰等方面具有显著的优势。为探究换热管声边界层外非线性声流旋涡的流场特性,采用Nyborg极限滑移速度法数值模拟了平面驻波声场和行波场中二维换热管周围的非线性声流现象。与经典Rayleigh声流的解析解对比,验证了数值方法的可行性。数值计算表明,在驻波场中,换热管处于声压波节和声压波腹位置时,换热管外分别呈现出4个和8个轴对称分布的声流旋涡结构;当换热管偏离声压波节或声压波腹位置时,换热管外的声流旋涡结构不再呈轴对称分布。滑移速度分布的波峰和波腹总个数决定了声流旋涡的个数。在行波场中,声流旋涡的流场特性与声波频率f和声压级L呈现出强的非线性依赖关系,声流强度满足:U2 max=6.95388e-72L33.50669f-0.98828。 相似文献