首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total synthesis of cordiaquinone K, a new antifungal and larvicidal meroterpenoid, is reported. The absolute configuration of cordiaquinone K was confirmed by the synthesis.  相似文献   

2.
From the roots of Cordia leucocephala (Boraginaceae), two new meroterpenoid naphthoquinones, 6‐[10‐(12,12‐dimethyl‐13α‐hydroxy‐16‐methenyl‐cyclohexyl)ethyl]‐1,4‐naphthalenedione (cordiaquinone L) and 5‐methyl‐6‐[10‐(12,12‐dimethyl‐13β‐hydroxy‐16‐methenyl‐cyclohexyl)methyl‐1,4‐naphthalenedione (cordiaquinone M) were isolated. Their structures were elucidated after detailed 1D and 2D NMR (COSY, HSQC, HMBC and NOESY) data analyses and comparison with literature data for analogous compounds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Arata Yajima 《Tetrahedron》2005,61(38):9164-9172
A versatile methodology for the synthesis of various terpenoids via B-alkyl Suzuki-Miyaura coupling as a key step is established. Synthesis of cordiaquinone J and K, new antifungal and larvicidal meroterpenoids, was achieved by using this methodology. The absolute configurations of cordiaquinone J and K were confirmed by the synthesis.  相似文献   

4.
Feeding of (2,3,4,5,6‐13C5)mevalonolactone to the fungus Hypomyces odoratus resulted in a completely labeled sesquiterpene ether. The connectivity of the carbon atoms was easily deduced from a 13C,13C COSY spectrum, revealing a structure that was different from the previously reported structure of hypodoratoxide, even though the reported 13C NMR data matched. A structural revision of hypodoratoxide is thus presented. Its absolute configuration was tentatively assigned from its co‐metabolite cis‐dihydroagarofuran. Its biosynthesis was investigated by feeding of (3‐13C)‐ and (4,6‐13C2)mevalonolactone, which gave insights into the complex rearrangement of the carbon skeleton during terpene cyclization by analysis of the 13C,13C couplings.  相似文献   

5.
Photoion yields from gaseous fullerenes, C(60) and C(70), for production of singly and doubly charged ions are measured by mass spectrometry combined with tunable synchrotron radiation at hnu=25-150 eV. Since the signal of triply or highly charged ions is very weak, the total photoionization yield curve can be estimated from the sum of the yields of the singly and doubly charged ions. A distinct feature appears in the resultant curve of C(60) which is absent in the calculated total photoabsorption cross section previously reported. This difference is attributed to C(60) (2+) ions chiefly produced by spectator Auger ionization of the shape resonance states followed by tunneling of the trapped electron or by cascade Auger ionization. Ratios between the yields of doubly and singly charged ions for C(60) and C(70) are larger than unity at hnu>50 eV. These ratios are quite different from those reported in the experiments using electron impact ionization.  相似文献   

6.
Product branching ratios (BRs) are reported for ion-molecule reactions of state-prepared nitrogen cation (N(2)(+)) with methane (CH(4)), acetylene (C(2)H(2)). and ethylene (C(2)H(4)) at low temperature using a modified ion imaging apparatus. These reactions are performed in a supersonic nozzle expansion characterized by a rotational temperature of 40 ± 5K. For the N(2)(+) + CH(4) reaction, a BR of 0.83:0.17 is obtained for the dissociative charge-transfer (CT) reaction that gives rise to the formation of CH(3)(+) and CH(2)(+) product ions, respectively. The N(2)(+) + C(2)H(2) ion-molecule reaction proceeds through a nondissociative CT process that results in the sole formation of C(2)H(2)(+) product ions. The reaction of N(2)(+) with C(2)H(4) leads to the formation of C(2)H(3)(+) and C(2)H(2)(+) product ions with a BR of 0.74:0.26, respectively. The reported BR for the N(2)(+) + C(2)H(4) reaction is supportive of a nonresonant dissociative CT mechanism similar to the one that accompanies the N(2)(+) + CH(4) reaction. No dependence of the branching ratios on N(2)(+) rotational level was observed. In addition to providing direct insight into the dynamics of the state-prepared N(2)(+) ion-molecule reactions with the target neutral hydrocarbon molecules, the reported low-temperature BRs are also important for accurate modeling of the nitrogen-dominated upper atmosphere of Saturn's moon, Titan.  相似文献   

7.
Enoate reductases from the family of old yellow enzymes (OYEs) can catalyze stereoselective trans-hydrogenation of activated C=C bonds. Their application is limited by the necessity for a continuous supply of redox equivalents such as nicotinamide cofactors [NAD(P)H]. Visible light-driven activation of OYEs through NAD(P)H-free, direct transfer of photoexcited electrons from xanthene dyes to the prosthetic flavin moiety is reported. Spectroscopic and electrochemical analyses verified spontaneous association of rose bengal and its derivatives with OYEs. Illumination of a white light-emitting-diode triggered photoreduction of OYEs by xanthene dyes, which facilitated the enantioselective reduction of C=C bonds in the absence of NADH. The photoenzymatic conversion of 2-methylcyclohexenone resulted in enantiopure (ee>99 %) (R)-2-methylcyclohexanone with conversion yields as high as 80–90 %. The turnover frequency was significantly affected by the substitution of halogen atoms in xanthene dyes.  相似文献   

8.
Three previously reported procedures for the synthesis of pure C(s)-C60Cl6 from C60 and ICl dissolved in benzene or 1,2-dichlorobenzene were shown to actually yield complex mixtures of products that contain, at best, 54-80% C(s)-C60Cl6 based on HPLC integrated intensities. MALDI mass spectrometry was used for the first time to identify other components of the reaction mixtures. An improved synthetic procedure was developed for the synthesis of about 150 mg batches of chlorofullerenes containing 90% C(s)-C60Cl6 based on HPLC intensities. The optimum reaction time was decreased from several days to seven minutes. Small amounts of the product were purified by HPLC (toluene eluent) to 99% purity. The pure compound C(s)-C60Cl6 is stable for at least three months as a solvent-free powder at 25 degrees C. The Raman, far-IR, and MALDI mass spectra of pure C(s)-C60Cl6 are reported for the first time. The Raman and far-IR spectra, the first reported for any C60Cl(n) chlorofullerene, were used to carry out a vibrational analysis of C(s)-C60Cl6 at the DFT level of theory.  相似文献   

9.
The asymmetric C-H functionalization of norbornene and norbornadiene with five-, six-, and seven-membered cyclic enones mediated by the reactive intermediate [{η(5)-((t)BuMe(2)Si)C(5)H(4)}Co(NO)(2)] is reported. A novel base mixture derived from enantiopure ammonium salts and NaHMDS was used as a source of chirality, and this enantioselective desymmetrization of C(s) alkenes has been applied to the asymmetric synthesis of C(2)- and C(1)-symmetric diene ligands in high regioselectivity (3.7-20:1 anti/syn), near perfect diastereoselectivity (>99:1 dr), and high enantioselectivity (90-96% ee).  相似文献   

10.
A new complex of cyclic peptide lactone antibiotics from Bacillus subtilis, which we named Maltacines, has recently been described. The structure elucidation of four of them is reported in this paper. The amino acid sequences and structures of the peptides were found by MS(n) of the ring-opened linear peptides, which gave uninterrupted sequences of Bn and Y'n ions. The identities of three unknown residues in the sequences were solved by a combination of derivatisation with phenylisothiocyanate (PITC), high-resolution mass spectrometry and H/D exchange. The nature and position of the cyclic structure was disclosed by a chemo-selective ring opening with Na18OH and was found to be a lactone formed between a hydroxyl of residue number 4 and the C-terminal amino acid number 12. For verification of the structure of the B2+ ion, peptides with different combinations of P/Q and P/K at the N-terminus were synthesised. The structure of the four peptides were found to be: C1a and C2a: cyclo-4,12(P-Q-Y-Adip-V-E-T-Y-Orn-103-Y-I-OH) and C1b/C2b: cyclo-4,12(P-Q-Y-Adip-V-E-T-Y-K-103-Y-I-OH). Adip = aminodihydroxy pentanoic acid.  相似文献   

11.
Three electronic absorption systems for C5 at 511, 445, and 232 nm and one for C6, C8, and C9 centered at 228, 259, and 288 nm have been observed in the gas phase. The C5 chain was produced in both discharge and ablation sources and detected using resonant two-color two-photon ionization spectroscopy involving 10.5 eV photons. The decay of the excited singlet electronic states indicates fast intramolecular processes on a subpicosecond time scale. The internal energy is assumed to be trapped in a triplet state for at least 15 micros. Hole-burning experiments on the 2 (3)Sigma(u)- <-- X (3)Sigma(g)- transition of C6, C8, and (1)Sigma(u)+ <-- X (1)Sigma(g)+ of C9 confirm the predissociative nature of the excited electronic states.  相似文献   

12.
Adding 1% of the metallic elements cerium, lanthanum, and yttrium to graphite rod electrodes resulted in different amounts of the hollow higher fullerenes (HHFs) C76-D2(1), C78-C2v(2), and C78-C2v(3) in carbon-arc fullerene-containing soots. The reaction of trifluoroiodomethane with these and other soluble HHFs at 520-550 degrees C produced 21 new C76,78,84,90(CF3)n derivatives (n = 6, 8, 10, 12, 14). The reaction with C76-D2(1) produced an abundant isomer of C2-(C76-D2(1))(CF3)10 plus smaller amounts of an isomer of C1-(C76-D2(1))(CF3)6, two isomers of C1-(C76-D2(1))(CF3)8, four isomers of C1-(C76-D2(1))(CF3)10, and one isomer of C2-(C76-D2(1))(CF3)12. The reaction with a mixture of C78-D3(1), C78-C2v(2), and C78-C2v(3) produced the previously reported isomer C1-(C78-C2v(3))(CF3)12 (characterized by X-ray crystallography in this work) and the following new compounds: C2-(C78-C2v(3))(CF3)8; C2-(C78-D3(1))(CF3)10 and C(s)-(C78-C2v(2))(CF3)10 (both characterized by X-ray crystallography in this work); C2-(C78-C2v(2))(CF3)10; and C1-C78(CF3)14 (cage isomer unknown). The reaction of a mixture of soluble higher fullerenes including C84 and C90 produced the new compounds C1-C84(CF3)10 (cage isomer unknown), C1-(C84-C2(11))(CF3)12 (X-ray structure reported recently), D2-(C84-D2(22))(CF3)12, C2-(C84-D2(22))(CF3)12, C1-C84(CF3)14 (cage isomer unknown), C1-(C90-C1(32))(CF3)12, and another isomer of C1-C90(CF3)12 (cage isomer unknown). All compounds were studied by mass spectrometry, (19)F NMR spectroscopy, and DFT calculations. An analysis of the addition patterns of these compounds and three other HHF(X) n compounds with bulky X groups has led to the discovery of the following addition-pattern principle for HHFs: In general, the most pyramidal cage C(sp(2)) atoms in the parent HHF, which form the most electron-rich and therefore the most reactive cage C-C bonds as far as 1,2-additions are concerned, are not the cage C atoms to which bulky substituents are added. Instead, ribbons of edge-sharing p-C6(X)2 hexagons, with X groups on less pyramidal cage C atoms, are formed, and the otherwise "most reactive" fullerene double bonds remain intact.  相似文献   

13.
C,C-dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene N,S-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C=C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.  相似文献   

14.
Enoate reductases from the family of old yellow enzymes (OYEs) can catalyze stereoselective trans ‐hydrogenation of activated C=C bonds. Their application is limited by the necessity for a continuous supply of redox equivalents such as nicotinamide cofactors [NAD(P)H]. Visible light‐driven activation of OYEs through NAD(P)H‐free, direct transfer of photoexcited electrons from xanthene dyes to the prosthetic flavin moiety is reported. Spectroscopic and electrochemical analyses verified spontaneous association of rose bengal and its derivatives with OYEs. Illumination of a white light‐emitting‐diode triggered photoreduction of OYEs by xanthene dyes, which facilitated the enantioselective reduction of C=C bonds in the absence of NADH. The photoenzymatic conversion of 2‐methylcyclohexenone resulted in enantiopure (ee >99 %) (R )‐2‐methylcyclohexanone with conversion yields as high as 80–90 %. The turnover frequency was significantly affected by the substitution of halogen atoms in xanthene dyes.  相似文献   

15.
The performances of H(2)/O(2) metal-cation-free alkaline anion-exchange membrane (AAEM) fuel cells operated with commercially available Au/C and Ag/C cathodes are reported for the first time. Of major significance, the power density obtained with 4 mg cm(-2) Ag/C (60% mass) cathodes was comparable to that obtained with 0.5 mg cm(-2) Pt/C (20% mass) electrodes, whereas the performance when using the same Ag/C cathode in a Nafion-based acidic membrane electrode assembly (MEA) was poor. These initial studies demonstrate that the oxygen reduction electrokinetics are improved when operating Pt/C cathodes at high pH in AAEM-based fuel cells as compared with operation at low pH (in Nafion-based proton-exchange membrane fuel cells). The results of in situ alternating current impedance spectroscopy were core to the assignment of the source of the limited performances of the AAEM-based fuel cells as being the limited supply of water molecules to the cathode reaction sites. Minimizing the thickness of the AAEM improved the performances by facilitating back-transport of water molecules from the anode (where they are generated) to the cathode. The urgent need for development of electrode architectures that are specifically designed for use in AAEM-based fuel cells is highlighted.  相似文献   

16.
The first syntheses of the polyhydroxylated alkaloids (iminosugars) broussonetines O and P, glycosidase inhibitors of the pyrrolidine class, have been performed in a convergent, stereocontrolled way from d-serine as the chiral starting material. The synthesis of broussonetin C, a further member of this compound family, is also reported. A cross-metathesis step was one key feature of the synthesis. The versatility of the synthetic concept chosen permits the access to many members of this compound family, both natural ones and analogues thereof.  相似文献   

17.
Using a series of Ir(I) and Rh(I) ketene complexes, conclusions about the structure and bonding of complexes of the fundamentally important ketene ligand class are reached. In a unique comparison of X-ray structures of the same metal fragment to ketenes in both the eta(2)-(C,C) and the eta(2)-(C,O) binding mode, the Ir-Cl bond distances in complexes of trans-Cl(Ir)[P(i-Pr)(3)](2) to phenylketene [4, eta(2)-(C,C)] and diphenylketene [2a, eta(2)-(C,O)] are 2.371(3) and 2.285(2) A, respectively. This would be consistent with greater trans influence of a ketene ligand bound to a metal through its C=C bond than one connected by its C=O bond. Back-bonding of Ir(I) and Rh(I) to diphenylketene was assessed using trans-Cl(M)[P(i-Pr)(3)](2)[eta(2)-(C,O)-diphenylketene] (2a and 2d). Most bond lengths and angles are identical, but slightly greater back-bonding by Ir(I) is suggested by the somewhat greater deformation of the ketene C=C=O system [C-C-O angles are 136.6(4) and 138.9(4) in the Ir and Rh cases 2a and 2d, respectively]. Syntheses of new labeled ketenes Ph(2)C=(13)C=O and Ph(2)C=C=(18)O and their Ir(I) and Rh(I) complexes are reported, along with the generation of an Ir(I) complex of PhCH=(13)C=O. The effects of isotopic substitution on infrared absorption data for ketene complexes are presented for the first time. Preliminary normal coordinate mode analysis allowed definitive assignment of absorptions ascribed to the C-O stretching frequencies of coordinated ketenes, which are near the absorptions for aromatic ring systems commonly found as substituents on ketenes. For free diphenylketene and four of its complexes and a phenylketene complex characterized by X-ray diffraction, the magnitude of the (13)C-(13)C coupling between the two ketene carbons is correlated to carbon-carbon bond distance.  相似文献   

18.
A systematic survey of the complete set of isomers of fullerenes C(38), C(40), C(42), C(44), C(46), C(48), C(50) and azafullerene C(44)N(6) is reported. All isomeric structures were optimized using first-principle density functional theory at the B3LYP/6-31G level. The isomeric structures with the lowest energies are C(38):17, C(40):38, C(42):45, C(44):75, C(44):89, C(46):109, C(48):171, and C(50):270. The ground-state structure of the azafullerene C(44)N(6) in the framework of C(50):270 has D(3) symmetry. The (13)C NMR chemical shifts and nucleus-independent chemical shifts (NICS) for the stable isomers of each fullerene are presented.  相似文献   

19.
By means of Fourier transform microwave spectroscopy of a supersonic molecular beam, we have detected the singly substituted carbon-13 isotopic species of C(5)H, C(6)H, and C(7)H. Hyperfine structure in the rotational transitions of the lowest-energy fine structure component ((2)Pi(12) for C(5)H and C(7)H, and (2)Pi(32) for C(6)H) of each species was measured between 6 and 22 GHz, and precise rotational, centrifugal distortion, Lambda-doubling, and (13)C hyperfine coupling constants were determined. In addition, resolved hyperfine structure in the lowest rotational transition (J = 32-->12) of the three (13)C isotopic species of C(3)H was measured by the same technique. By combining the centimeter-wave measurements here with previous millimeter-wave data, a complete set of (13)C hyperfine coupling constants were derived to high precision for each isotopic species. Experimental structures (r(0)) have been determined for C(5)H and the two longer carbon-chain radicals, and these are found to be in good agreement with the predictions of high-level coupled-cluster calculations. C(3)H, C(5)H, and C(7)H exhibit a clear alternation in the magnitude and sign of the (13)C hyperfine coupling constants along the carbon-chain backbone. Because the electron spin density is nominally zero at the central carbon atom of C(3)H, C(5)H, and C(7)H, and at alternating sets of carbon atoms of C(5)H and C(7)H, owing to spin polarization, almost all of the (13)C coupling constants at these atoms are small in magnitude and negative in sign. Spin-polarization effects are known to be important for the Fermi-contact (b(F)) term, but prior to the work here they have generally been neglected for the hyperfine terms a, c, and d.  相似文献   

20.
The isomers of the nitrogen-substituted fullerenes (azafullerenes) C19N, C59N, C69N, and C75N are examined using all-electron Gaussian atomic orbital basis density functional theory, to determine the doublet radical geometries and hyperfine coupling constants. We find that the inaccuracy of previously calculated hyperfine coupling constants of C59N resulted from a poor treatment of the geometry optimization. We find that UB3LYP minimization of the radical geometry in the 6-31G basis, followed by single-point evaluation of the hyperfine constants in which an expanded basis is used on the atomic sites of interest, forms an efficient compromise between computational cost and accuracy with respect to experimental hyperfine constants. Using this approach, we assign the hyperfine signals observed in experiments on the C69N radical by calculating the hyperfine coupling constants for all five of the isomers and examine the electron spin density distribution. Finally, we present predicted hyperfine coupling constants for the isomers of C19N and C75N for use in the interpretation of future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号