首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Three different polyvinylidene fluoride (PVDF) resins were selected to develop porous membranes through melt extrusion and stretching. The effect of the polymer rheology on chain elongation in the melt state was studied. The possibility of generating a row‐nucleated lamellar crystallization for precursor films was investigated. The arrangement and orientation of the crystalline phase were examined by wide angle X‐ray diffraction (WAXD) and Fourier Transform Infrared Spectroscopy (FTIR). The extrusion conditions and the blend compositions were adjusted to obtain uniform precursor films with appropriate morphology. Annealing, cold and hot stretching were consequently employed to generate and enlarge the pores. It was found that a proper crystalline structure of the precursor films was strongly dependent on molecular weight of PVDF and process conditions. Blending of two PVDF resins having low and high molecular weights improved the water vapor permeability of the obtained membranes. The tensile response was monitored during the stretching process for membrane development and the results revealed a distinct behavior for the membranes having low or high permeability. The membranes with low permeability did not show any significant strain hardening during stretching whereas for highly permeable membranes, a noticeable strain hardening behavior was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1219–1229, 2009  相似文献   

2.
Vanadium dioxide (VO2) films were synthesized on mica substrates by a polymer-assisted deposition method, followed by rapid annealing with different annealing temperatures. The crystalline structure and morphology of the films were investigated by XRD and FE-SEM, and their phase transition properties were studied by in situ FT-IR. The results indicated that the annealing temperature affected the crystalline structure and morphology of the films remarkably, which then resulted in varied phase transition properties. In particular, the films annealed at higher temperature showed more polycrystalline structure, increased particle size and reduced phase transition intensity. But the films exhibited the similar hysteresis temperature width with increasing annealing temperature.  相似文献   

3.
An effective chemical route to nanostructured tungsten oxide films derived from a peroxopolytungstic acid (PTA)/thiourea precursor solution is demonstrated. The conventional procedure of preparing the precursor needs more than 24 h for well‐mixing and refluxing the PTA‐based solution, while the thiourea‐assisted approach takes less than 1 h to prepare the precursor solution because the excess hydrogen peroxide can be efficiently eliminated by oxidation of thiourea. With the precursor solution, tungsten oxide films are deposited by spin coating followed by high temperature annealing. The film annealed at 400 °C possesses a porous nanostructure of nanocrystalline tungsten oxide embedded in an amorphous tungsten oxide matrix, which arises from the gaseous species released through decomposition of thiourea oxides during annealing. The 400 °C‐annealed, thiourea‐assisted tungsten oxide film exhibits electrochromic (EC) properties superior to those of the film prepared without thiourea, including large transmittance modulation and coloration efficiency, fast response time and adequate reliability. When increasing the annealing temperature to 450 °C, the thiourea‐assisted tungsten oxide film is also porous but well‐crystallized and shows inferior EC properties. Electrochemical impedance spectroscopy analysis indicates that, in addition to the porous structure, a fast charge‐transport rate within the solid portion of the 400 °C‐annealed nanostructured film plays a crucial role in enhancing EC performances of the thiourea‐assisted tungsten oxide film.  相似文献   

4.
采用水热法在多孔阳极氧化铝(AAO)模板上制备了NaGdF<,4>:Eu<'3+>(摩尔分数5.0%)/AAO薄膜,并研究了制备方法、溶液浓度和退火温度对薄膜样品形貌、结构和发光性质的影响.XRD结果表明,在低于500 ℃退火,得到具有NaGdF<,4>六方相结构的NaGdF<,4>:Eu<'3+>/AAO薄膜;而在5...  相似文献   

5.
Chitosan macroporous membranes with asymmetric morphology were obtained by using an inorganic porogen agent (SiO2). Chitosan/silica ratios used were 1:1, 1:3, and 1:5 w/w. A methodology to obtain asymmetric membranes with control of porosity and average pore size was proposed. The porous membranes were obtained taking advantage of the opposite solubility characteristics of chitosan and silica (4–20 μm). The membranes were characterized by SEM and water sorption capacity. The porosity was calculated by the relationship between dense and macroporous membranes. The SEM images of both surfaces and cross-section of the membranes confirmed their asymmetric morphology. Using a double-cell method, the permeability coefficients of two model drugs (sodium sulfamerazine and sulfametoxipyridazine) were determined. The effects of porous layer, drug type, concentration and temperature were evaluated. The results revealed that the increase in porosity results in significant differences in permeability and that the effects of drug concentration and bath temperature become less pronounced as porosity increases. The mass transport was analyzed in terms of pore-flow mechanism and the solution-diffusion mechanism. The results showed that the methodology was very efficient to yield asymmetric membranes with good mechanical resistance, control of porous size and dense layer thickness and that these membranes can potentially be used to the transport of drugs.  相似文献   

6.
The model catalysts of ZrO(2)-supported Au nanoparticles have been prepared by deposition of Au atoms onto the surfaces of thin ZrO(2) films with different morphologies. The adsorption and thermal stability of Au nanoparticles on thin ZrO(2) films have been investigated using synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The thin ZrO(2) films were prepared by two different methods, giving rise to different morphologies. The first method utilized wet chemical impregnation to synthesize the thin ZrO(2) film through the procedure of first spin-coating a zirconium ethoxide (Zr(OC(2)H(5))(4)) precursor onto a SiO(2)/Si(100) substrate at room temperature followed by calcination at 773 K for 12 h. Scanning electron microscopy (SEM) investigations indicate that highly porous "sponge-like nanostructures" were obtained in this case. The second method was epitaxial growth of a ZrO(2)(111) film through vacuum evaporation of Zr metal onto Pt(111) in 1 × 10(-6) Torr of oxygen at 550 K followed by annealing at 1000 K. The structural analysis with low energy electron diffraction (LEED) of this film exhibits good long-range ordering. It has been found that Au forms smaller particles on the porous ZrO(2) film as compared to those on the ordered ZrO(2)(111) film at a given coverage. Thermal annealing experiments demonstrate that Au particles are more thermally stable on the porous ZrO(2) surface than on the ZrO(2)(111) surface, although on both surfaces, Au particles experience significant sintering at elevated temperatures. In addition, by annealing the surfaces to 1100 K, Au particles desorb completely from ZrO(2)(111) but not from porous ZrO(2). The enhanced thermal stability for Au on porous ZrO(2) can be attributed to the stronger interaction of the adsorbed Au with the defects and the hindered migration or coalescence resulting from the porous structures.  相似文献   

7.
Homogenous thin films are preferable for high‐performance gas sensors because of their remarkable reproducibility and long‐term stability. In this work, a low‐temperature fabrication route is presented to prepare crack‐free and homogenous metal oxide periodic porous thin films by oxygen plasma irradiation instead of high temperature annealing by using a sacrificial colloidal template. Rutile SnO2 is taken as an example to demonstrate the validity of this route. The crack‐free and homogenous porous thin films are successfully synthesized on the substrates in situ with electrodes. The SnO2 porous thin film obtained by plasma irradiation is rich in surface OH groups and hence superhydrophilic. It exhibits a more homogenous structure and lower resistance than porous films generated by annealing. More importantly, such thin films display higher sensitivity, a lower detection threshold (100 ppb to acetone) and better durability than those that have been directly annealed, resulting in enhanced gas‐sensing performance. The presented method could be applied to synthesize other metal oxide homogenous thin films and to fabricate gas‐sensing devices with high performances.  相似文献   

8.
以单一组分聚L-乳酸(PLLA)为成膜材料,利用水辅助法制备了聚乳酸(PLLA)蜂窝状多孔膜.利用扫描电镜(SEM)和原子力显微镜(AFM)观察多孔膜形貌.研究溶剂、溶液浓度、环境温度和湿度等因素对所成多孔膜结构的影响.实验结果表明,高湿度环境和具有一定浓度的聚合物溶液是制备蜂窝状多孔膜的必要条件.溶剂的挥发性是形成规整蜂窝状孔结构的关键因素.环境相对湿度由43%增加到91%,PLLA多孔膜的孔径由(1.75±0.24)μm增加到(11.50±1.43)μm,且孔呈现六边形的蜂窝状结构.扫描电镜断面和AFM表明:膜表面形成了深度约为1.8μm的单层孔结构.通过控制溶液浓度、环境温度和湿度等因素来控制膜的表面形貌及其所成蜂窝状孔的大小.最佳的成膜条件为溶剂CH2Cl2,湿度75%RH,温度34℃,浓度3 wt%.讨论了蜂窝状多孔膜的形成机理.  相似文献   

9.
A blend of two polypropylene resins, different in molecular structure, one with linear chains and the other with long chain branches, was investigated to develop microporous membranes through melt extrusion (cast film process) followed by film stretching. The branched component significantly affected the row‐nucleated lamellar crystalline structure in the precursor films. The arrangement and orientation of the crystalline and amorphous phases were examined by wide angle X‐ray diffraction and Fourier transform infrared spectroscopy methods. It was found that blending of a small amount of a long chain branched polypropylene improved the orientation of the both crystalline and amorphous phases in the precursor films. Annealing, followed by cold and hot stretching were consequently employed to generate and enlarge pores in the films as a result of lamellae separation. SEM micrographs of the surface of the membranes obtained from the blend revealed elongated thin fibrils and a large number of lamellae. The lamellae thickness for the blend was much shorter in comparison to that of the linear PP precursor film. The permeability of the samples to water vapor and N2 was significantly enhanced (more than twice) for the blend system. The porosity of the blend membrane showed a significant improvement with a value of 53% compared to 41% for the linear PP membrane. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 148–157, 2008  相似文献   

10.
Emanation thermal analysis (ETA), based on the measurement of the release of radon previously incorporated into the sample, was used to characterize the differences in the thermal behavior porous titania film (thickness 200 nm),when heated in argon and in oxygen, respectively, in the range from 20 to 800°C. It was observed that the annealing of porosity and structure defects in the near surface layers of the porous titania film (anatase) was enhanced on heating in oxygen in comparison to the heating in argon. ETA results were compared with SEM micrographs and XRD patterns of the titania film samples heated to 500 and 800°C, respectively. A mathematical model was used for the evaluation of the temperature dependence of the titania films microstructure development.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
周杰  傅相锴  孙美丹  罗伟 《化学学报》2006,64(10):1004-1010
以无水醋酸镍、乙醇为前驱液, 加入适量正丁醇及PEO2000等为稳定剂, 采用改进的溶胶-凝胶法制备了稳定的PEO2000纳米Ni(OH)2复合溶胶体系, 采用旋涂法在ITO (In2O3∶Sn)导电玻璃上形成均匀的氧化镍薄膜. 研究了溶胶组分对成膜性能的影响, 采用TG-DSC分析、X射线衍射仪和扫描电镜, 研究了热处理过程中的结构变化和表面形貌. 循环伏安和可见光透过率测试表明该氧化镍薄膜具有良好的电致变色性能和阳极着色效应.  相似文献   

12.
A diethanolamine stabilized precursor sol has been utilized for studying the effect of sol aging and annealing temperature on key properties of TiO2 films. X-ray diffraction investigations have shown increased crystallite size in the films as a function of both sol aging and the thermal treatment. Fourier transform infrared studies have elucidated that cleavage of the bond involving diethanolamine and the alkoxide in the films requires high temperature annealing treatment upon the use of aged sol for the deposition of the films. Multiple step chronoamperometry has shown the ion storage capacity of the films increases as a function of sol aging, with the highest extent of Li ion insertion being obtained for films produced from as-prepared and aged sols and subsequently annealed at, 300 and 350 °C, respectively. Films with excellent optical quality were obtained. Ellipsometry revealed that the refractive indices of the films vary from 1.67 to 2.02. The highest thickness obtained in these films was nearly 900 nm. The bandgaps of the films for both direct and indirect transitions decreased as a function of precursor sol’s aging. In addition, although the indirect bandgap values have shown a decrease with increasing annealing temperature, the direct bandgap values reveal a slight increase as a function of annealing temperature.  相似文献   

13.
Amorphous SiO2 thin films were prepared on glass and silicon substrates by cost effective sol-gel method. Tetra ethyl ortho silicate (TEOS) was used as the precursor material, ethanol as solvent and concentrated HCl as a catalyst. The films were characterized at different annealing temperatures. The optical transmittance was slightly increased with increase of annealing temperature. The refractive index was found to be 1.484 at 550 nm. The formation of SiO2 film was analyzed from FT-IR spectra. The MOS capacitors were designed using silicon (100) substrates. The current-voltage (I-V), capacitance-voltage (C-V) and dissipation-voltage (D-V) measurements were taken for all the annealed films deposited on Si (100). The variation of current density, resistivity and dielectric constant of SiO2 films with different annealing temperatures was investigated and discussed for its usage in applications like MOS capacitor. The results revealed the decrease of dielectric constant and increase of resistivity of SiO2 films with increasing annealing temperature.  相似文献   

14.
Flat sheet asymmetric reverse osmosis membranes were successfully prepared from N,N-dimethylacetamide (DMAc) solutions of a series of novel wholly aromatic polyamide-hydrazides that contained different amounts of para- and meta-phenylene rings. These polyamide-hydrazides were synthesized by a low temperature solution polycondensation reactions of either 4-amino-3-hydroxybenzhydrazide or 3-amino-4-hydroxybenzhydrazide with an equimolar amount of either terephthaloyl dichloride [TCl], isophthaloyl dichloride [ICl] or mixtures of various molar ratios of TCl and ICl in anhydrous DMAc as a solvent. All the polymers have the same structural formula except of the way of linking phenylene units inside the polymer chains. The content of para- to meta-phenylene moieties was varied within these polymers so that the changes in the latter were 10 mol% from polymer to polymer, starting from an overall content of 0-100 mol%. All the membranes were characterized for their salt rejection (%) and water permeability (cm3 cm−2 day−1) of 0.5 N aqueous sodium chloride feed solution at 3924 kPa operating pressure. The effects of polymers structural variations together with several processing parameters to achieve the best combination of high selectivity and permeability were studied. Effects of various processing parameters of the membranes on their transport properties were investigated by varying the temperature and period of the solvent evaporation of the cast membranes, coagulation temperature of the thermally treated membranes, annealing of the coagulated membranes, casting solution composition, membrane thickness and the operating pressure. During the thermal treatment step, the asymmetric structure of the membranes with a thin dense skin surface layer supported on a more porous layer was established. The former layer seems to be responsible for the separation performance. The results obtained showed that membrane performance was very much influenced by all of the examined processing variables and that membranes with considerably different properties could be obtained from the same polymer sample by using different processing parameters. Thus, the use of higher temperatures and longer exposure times in the protomembrane forming thermal treatment step would result in a membrane of lower solvent content and with a thicker skin layer and consequently led to higher salt rejection at lower water permeability. Most significantly, the membrane properties clearly depended on the polymer structure. Under identical processing condition, substitution para-phenylene rings for meta-phenylene ones within the polymer series resulted in an increase in salt rejection capability of the membranes. This may be attributed to an increase in their chain symmetry associated with increased molecular packing and rigidity through enhanced intermolecular hydrogen bonding. This produces a barrier with much smaller pores that would efficiently prevent the solute particles from penetration. Coagulation temperature controls the structure (porosity) of the membrane particularly its supported layer and consequently its water permeability. Moreover, annealing of the prepared membranes in deionized water at 100 °C was found essential for useful properties in the single-stage separation applications, which required optimum membrane selectivity. Upon annealing, the membrane shrinks resulting in reducing its pore size particularly in the skin layer and consequently improving the salt rejection. Addition of lithium chloride to the casting solution produced a membrane with increased porosity and improved water permeability. Salt rejection capability of the membranes is clearly affected by the applied pressure, reaching its maximum at nearly 4000 kPa. Furthermore, the water permeability is inversely proportional to the membrane thickness, while the salt rejection is not substantially influenced.  相似文献   

15.
Gas transport properties are reported for two series of films prepared from copolyesters of 73 mol % hydroxybenzoic acid (HBA) and 27 mol % 2,6-hydroxynaphthoic acid (HNA) which systematically vary the degree of orientation and annealing time. Scanning electron microscopic (SEM) photomicrographs of the liquid-crystalline polymer (LCP) films showed evidence of a skin-core structure and polydomain texture. The degree of orientation in the films was quantified by analyzing the azimuthal intensity of the x-ray reflection associated with the lateral packing of the nematic mesophase. Using heat of fusion data from differential scanning calorimetry (DSC), the films were found to contain low levels of crystallinity estimated to be in the range of 5 to 15 wt %, which increased with annealing time. Permeability measurements were made for He, H2, O2, N2, Ar, and CO2 at 35°C and the diffusivities were computed from time-lag data. The films exhibited excellent barrier properties resulting largely from very low gas solubility coefficients. A moderate reduction in permeability was observed with increased orientation, which could be attributed directly to a decrease in the effective diffusivity. The effect of increased crystallinity from annealing on the permeability coefficients was smaller than would be expected for similar changes in the crystallinity of conventional polymers. Analysis using a simple two-phase model suggests that a mechanism dominated by transport in a small volume fraction of boundary regions possibly could account for the bulk transport properties of these materials.  相似文献   

16.
采用溶胶浸渍模板法制备了有序多孔的氧化钛(TiO2)和氧化锌(ZnO)薄膜。首先,在洁净的玻璃基片上通过浸渍-提拉工艺组装有序的聚苯乙烯微球(PS)阵列模板;然后再采用溶胶浸渍法将TiO2和ZnO溶胶灌充到PS模板微球的间隙内;最后通过煅烧去除PS而得多孔薄膜。采用SEM观察了薄膜的表面形貌,并用XRD对薄膜的性能进行了表征。结果表明,溶胶的浓度对薄膜形貌有着显著的影响。经煅烧后,TiO2和ZnO薄膜分别为锐钛矿和六方纤锌矿结构。此外,对模板的组装及溶胶的灌注过程进行了分析。  相似文献   

17.
Titanium dioxide thin films have been synthesized by sol–gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 °C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature.  相似文献   

18.
Porous SiO2 films were successfully deposited on silicon substrates by a modified base-catalyzed Sol-Gel process (MBCP) containing polyvinyl alcohol (PVA). The process conditions, such as the gelation time, the synthesis temperature, the stabilizing agent of the precursor solution and the spin coating speed, the heat-treatment, the annealing temperature of the film on the microstructure and porosity of porous SiO2 films were systematically investigated by SEM, XRD and ellipsometry techniques. This study provides a novel preparation technique for the porous SiO2 film. Using this process, the resultant film can reach a thickness of 3.6 m for one layer, a porosity of 25–50%, a low thermal conductivity of 0.11 W/m·K. This film will be used as a low dielectric layer, an thermal-insulating layer and a low refractive index layer.  相似文献   

19.
Effects of the degree, velocity, and temperature of repeated extension of porous PE films on their structure and transport and mechanical properties are investigated. The sizes of through-flow channels and the permeability of porous films are determined via filtration porosimetry. A rise in the temperature and the degree of extension in the course of orientation extension noticeably increases the sizes of pores, the overall porosity, the specific surface area, and the permeability of the films and improves their mechanical characteristics.  相似文献   

20.
Anatase TiO2 porous thin films were prepared on glass substrates by sol-gel method with Cetyltrimethylammonium Bromide (CTAB) as a pore-forming agent, Tetrabutylorthotitanate as Ti precursor, ethanol as solvent and diethanolamine as chelating agent respectively. IR, TG-DSC, XRD and SEM analyzed the chemical and physical changes during sol-gel process and characteristics of the films. Effects of the amount of CTAB, alkane and water on morphology of the films were discussed and the principle of forming porous structure was proposed. It was shown that the diameter of pores was changed in the range of 30–400 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号