首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymeric metacyclophaneoctol-based sulfonic acids have been synthesized, and their ion-exchange properties have been studied. New polymeric sulfonic acids have been obtained through the sulfonation of network polymers based on immobilized cis-metacyclophane-3,5,10,12,17,19,24,26-octols. The structure of the polymers has been investigated by means of IR spectroscopy, potentiometric titration, and elemental analysis. The polymers thus obtained possess a high ion-exchange capacity with respect to Na+, Cu2+, [Pd(NH3)4]2+, and In3+ cations in a wide pH range. Selectivity coefficients of Na+-H+, Cu2+-H+, and In3+-H+ ion exchange have been estimated.  相似文献   

2.
The selectivity and thermodynamic characteristics of exchange of protons in SO3H groups of a sulfonated network polymer based on cis-tetraphenylcalix[4]resorcinarene for Na+, Cu2+, and In3+ cations from aqueous solutions are considered. Semiempirical quantum-chemical calculations of molecular ensembles modeling the structure of the elementary polymer unit in the H and Na forms were performed. The experimental data on the equilibrium phase compositions and the heat of exchange were used to calculate the thermodynamic equilibrium constants, Gibbs energy, enthalpy, and entropy of ion exchange.  相似文献   

3.
The ion-exchange equilibrium in network polymers obtained from cis-2,8,14,20-tetraphenyl-4,6,10,12,16,18,22,24-octahydroxycalix[4]arene by template synthesis on cations Na+, K+, and Ba2+ as matrices was studied. The selectivity coefficients of ion exchanges Ba2+-H+, Na+-H+, K+-H+, Na+-K+, and Na+-NH4 + were determined. The template synthesis enhanced the affinity of the polymers to matrix-forming cations by 6–8 kJ mol−1. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1919–1922, August, 2005.  相似文献   

4.
The transition to a hydrogen economy requires the development of cost-effective methods for purifying hydrogen from CO. In this study, we explore the possibilities of Cu/ZSM-5 as an adsorbent for this purpose. Samples obtained by cation exchange from aqueous solution (AE) and solid-state exchange with CuCl (SE) were characterized by in situ EPR and FTIR, H2-TPR, CO-TPD, etc. The AE samples possess mainly isolated Cu2+ cations not adsorbing CO. Reduction generates Cu+ sites demonstrating different affinity to CO, with the strongest centres desorbing CO at about 350 °C. The SE samples have about twice higher Cu/Al ratios, as one H+ is exchanged with one Cu+ cation. Although some of the introduced Cu+ sites are oxidized to Cu2+ upon contact with air, they easily recover their original oxidation state after thermal treatment in vacuum or under inert gas stream. In addition, these Cu+ centres regenerate at relatively low temperatures. It is important that water does not block the CO adsorption sites because of the formation of Cu+(CO)(H2O)x complexes. Dynamic adsorption studies show that Cu/ZSM-5 selectively adsorbs CO in the presence of hydrogen. The results indicate that the SE samples are very perspective materials for purification of H2 from CO.  相似文献   

5.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

6.
A novel 1,8-naphthalimide dye with simple structure has been produced by a facile synthetic method for colorimetric and fluorescent sensing of H+ and Cu2+. In CH3CN/H2O (1/1, v/v), the dye could monitor H+ using dual channels (ratiometric absorbance and fluorescence intensity change) from pH 6.2 to 12.0. Meanwhile, in the pH range of 1.9–5.2, the dye could also be used to detect Cu2+ using triple channels [ultraviolet–visible (UV–Vis) absorption, fluorescence intensity reduction, as well as fluorescence blueshift]. The detection limits for Cu2+ evaluated by colorimetric and fluorescent titration were 6.10 × 10?7 and 2.62 × 10?7 M, respectively. The dye exhibited specific selectivity and sensitivity for H+ and Cu2+ over various coexisting metal ions. Moreover, the sensing mechanism of the dye for H+ and Cu2+ was carefully examined.  相似文献   

7.
The simple preparation of the multicomponent devices [Cu4( A )2]4+ and [Cu2( A )( B )]2+, both rotors with fluxional axles undergoing domino rotation, highlights the potential of self‐sorting. The concept of domino rotation requires the interconversion of axle and rotator, allowing the spatiotemporal decoupling of two degenerate exchange processes in [Cu4( A )2]4+ occurring at 142 kHz. Addition of two equiv of B to rotor [Cu4( A )2]4+ afforded the heteromeric two‐axle rotor [Cu2( A )( B )]2+ with two distinct exchange processes (64.0 kHz and 0.55 Hz). The motion requiring a pyridine→zinc porphyrin bond cleavage is 1.2×105 times faster than that operating via a terpyridine→[Cu(phenAr2)]+ rupture. Finally, both rotors are catalysts due to their copper(I) content. The fast domino rotor (142 kHz) was shown to suppress product inhibition in the catalysis of the azide–alkyne Huisgen cycloaddition.  相似文献   

8.
The ultrafiltration technique evaluates the interactions of water‐soluble polymers with metal ions. Aqueous solutions containing poly(sodium 4‐styrenesulfonate) (PSS), Cu(NO3)2, NaNO3, and iminodiacetic acid (IDAA) are examined by this technique. Cu2+ undergoes complex formation with IDAA and intreracts electrostatically with PSS. On the other hand, Na+ ions are in competition with Cu2+ for the electrostatic binding to PSS. The solutions are ultrafiltered keeping the ionic strength constant, so their compositions are allowed to change continuously. The concentration of Cu2+ bound to the polymer showed an exponential decay during filtration. The concentration of Cu2+ bound to the polymer before ultrafiltration is calculated by extrapolation. The concentration of the different species in solution is proposed as a function of the filtration factor. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2587–2593, 2002  相似文献   

9.
The equilibrium of the reaction Cu2++Cu?2 Cu+ has been investigated in cone. solutions of Ca(ClO4)2. The apparent equilibrium constants of this reaction and the formal potentials of the Cu2+/Cu+, Cu2+/Cu and Cu+/Cu redox systems were determined. From these data the hydration numbers of the Cu2+ and Cu+ ions were estimated and the scheme of the reaction studied was proposed and discussed. In addition the equilibrium constants of the reaction Cu2++Cu(Hg)?2 Cu+ were calculated and discussed.  相似文献   

10.
General kinetic relations were established for the first step of oxidation of Acid Blue 80 in weakly acidic, neutral and basic media in the following systems: Fe2+-H2O2, Mn2+-HCO3 --H2O2, and Cu2+-phenanthroline-H2O2. The rate constant for the reaction of hydroxyl radical with the dye and the dependence of the degree of bleaching upon oxidant and catalyst concentrations were determined.  相似文献   

11.
Nature and Stability of Some Metallic Complexes of Dinucleating Cryptands in Solution II. Polythiamacrotricycles and Related Monocyclic Subunits The stability constants of the Cu2+ and Ag+ complexes of the cylindrical macrotricycle 1a (1,7,13,19-tetraaza 4,16-dioxa 10,22,27,32-tetrathiatricyclo[17.5.5.5]tetratriacontane) have been determined by pH-metry, as well as those of the Cu2+, Co2+, Zn2+, Cd2+, Pb2+, and Ag+ complexes of the monocyclic subunit 2a (1,7-dimethyl-1,7-diaza 4,10-dithiacyclododecane), in aqueous solutions (NaClO4) at 25°. In the Cu(II) systems, equilibria were reached slowly, and the results established by pH-metry were confirmed by UV/VIS spectrophotometric studies. The tricycle 1a forms dinuclear cryptates with copper and silver, with overall stability constants log β210 (Cu2- 1a )4+ = 18.5, log β21-2 (Cu2- 1a (OH)2)2+ = 4.8, log β210(Ag2- 1a )2+ = 23.0. Ag+ also forms a mononuclear (Ag- 1a )+ complex, with log β110 = 13.1, but no mononuclear species were detected in the Cu- 1a system. The absorption spectra of the bis-Cu(II) complexes of 1a and 2a in aqueous medium, MeOH and propylene carbonate (PC) are given, as well as those, in MeOH and PC, of the bis-copper complexes of the related monocycles 3 and 4 (1,7-diaza-4,10,13-trithiacyclopentadecane and 1.10-diaza 4,7,13,16-tetrathiacyclooctadecane, respectively), and tricycle 5 with two benzyl groups in the lateral chains. The complexing properties of the polyoxa- and polythia macrotricycles (Parts I and II of this series) are compared to those of other bis-chelating ligands, the bicyclic bis-tren and the monocyclic bis-dien.  相似文献   

12.
The intrinsic binding ability of 7 natural peptides (oxytocin, arg8‐vasopressin, bradykinin, angiotensin‐I, substance‐P, somatostatin, and neurotensin) with copper in 2 different oxidation states (CuI/II) derived from different Cu+/2+ precursor sources have been investigated for their charge‐dependent binding characteristics. The peptide‐CuI/II complexes, [M − (n‐1)H + nCuI] and [M − (2n‐1)H + nCuII], are prepared/generated by the reaction of peptides with CuI solution/Cu‐target and CuSO4 solution and are analyzed by using matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry. The MALDI mass spectra of both [M − (n‐1)H + nCuI] and [M − (2n‐1)H + nCuII] complexes show no mass shift due to the loss of ─H atoms in the main chain ─NH of these peptides by Cu+ and Cu2+ deprotonation. The measured m/z value indicates the reduction of CuI/II oxidation state into Cu0 during MALDI processes. The number and relative abundance of Cu+ bound to the peptides are greater compared with the Cu2+ bound peptides. Oxytocin, arg8‐vasopressin, bradykinin, substance‐P, and somatostatin show the binding of 5Cu+, and angiotensin‐I and neurotensin show the binding of 7Cu+ from both CuI and Cu targets, while bradykinin shows the binding of 2Cu2+, oxytocin, arg8‐vasopressin, angiotensin‐I, and substance‐P; somatostatin shows the binding of 3Cu2+; and neurotensin shows 4Cu2+ binding. The binding of more Cu+ with these small peptides signifies that the bonding characteristics of both Cu+ and Cu2+ are different. The amino acid residues responsible for the binding of both Cu+ and Cu2+ in these peptides have been identified based on the density functional theory computed binding energy values of Cu+ and the fragment transformation method predicted binding preference of Cu2+ for individual amino acids.  相似文献   

13.
《Electroanalysis》2006,18(18):1827-1832
Studies of nitric oxide (NO) release from S‐nitrosoglutathione (GSNO) decomposition by Cu2+ in the presence of reducing agents were performed using a nickel porphyrin and Nafion‐coated microsensor in order to compare the efficiency of sodium hydrosulfite (Na2S2O4) and sodium borohydride (NaBH4) to that of the most abundant endogenous reducer, glutathione (GSH). When it was mixed to Cu(NO3)2 and added to equimolar concentration of GSNO, each reducing agent caused a NO release (measured in terms of oxidation current) but only NaBH4 induced a proportional rise if its concentration doubled and that of Cu2+ remained constant. For Na2S2O4, there was a mild increase and for GSH, no change. Furthermore, when Cu2+ concentrations ranging from 0.5 to 5 μM were mixed with 2 μM reducing agent and added to 2 μM GSNO, the NO oxidation current linearly increased with NaBH4 and was constant with Na2S2O4. Concerning GSH, Cu2+ dose‐dependently increased the NO release from GSNO only if the Cu2+‐to‐reducer ratio was ≤1. However, GSH formed the catalytic species Cu+ even in excess of Cu2+ and GSNO as indicated by suppression of the Cu2+/GSH‐induced NO release when the Cu+ chelator neocuproine was added to GSNO. This work shows that, among the 3 reducing agents, only NaBH4 allows Cu2+ to dose‐dependently increase the NO release from GSNO for Cu2+‐to‐reducer ratios ranging from 0.25 to 2.5. Despite this good effectiveness, excess of NaBH4 compared to both Cu2+ and GSNO seems to be required for optimal NO release.  相似文献   

14.
Five metal–organic frameworks (MOFs) formed by [WS4Cux]x?2 secondary building units (SBUs) and multi‐pyridyl ligands are presented. The [WS4Cux]x?2 SBUs function as network vertexes showing various geometries and connectivities. Compound 1 contains one‐dimensional channels formed in fourfold interpenetrating diamondoid networks with a hexanuclear [WS4Cu5]3+ unit as SBU, which shows square‐pyramidal geometry and acts as a tetrahedral node. Compound 2 contains brick‐wall‐like layer also with a hexanuclear [WS4Cu5]3+ unit as SBU. The [WS4Cu5]3+ unit in 2 is a new type of [WS4Cux]x?2 cluster unit in which the five Cu+ ions are in one plane with the W atom, forming a planar unit. Compound 3 shows a nanotubular structure with a pentanuclear [WS4Cu4]2+ unit as SBU, which is saddle‐shaped and acts as a tetrahedral node. Compound 4 contains large cages formed between two interpenetrated (10,3)‐a networks also with a pentanuclear [WS4Cu4]2+ unit acting as a triangular node. The [WS4Cu4]2+ unit in 4 is isomeric to that in 3 and first observed in a MOF. Compound 5 contains zigzag chains with a tetrahedral [WS4Cu3]+ unit as SBU, which acts as a V‐shaped connector. The influence of synthesis conditions including temperature, ligand, anions of CuI salts, and the ratio of [NH4]2WS4 to CuI salt on the formation of these [WS4Cux]x?2‐based MOFs were also studied. Porous MOF 3 is stable upon removal and exchange of the solvent guests, and when accommodating different solvent molecules, it exhibits specific colors depending on the polarity of incorporated solvent, that is, it shows a rare solvatochromic effect and has interesting prospects in sensing applications.  相似文献   

15.
Nature and Stability of Some Metallic Complexes of Dinucleating Cryptands in Solution III. The Monocycle [22]-Py2N4 The nature and stability of complexes formed by a new 22-membered monocycle L = [22]-Py2N4 with the cations Mn+ = Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, and Ag+ have been determined in aqueous solutions (0.01M NaClO4, 25°) by pH-metry and also, for the copper system, by UV-absorption spectrophotometry. The stepwise protonation constants of the four amine functions of L were 9.1, 8.3, 7.1 and 3.7 logarithms units, respectively. No evidence was found for the protonation of the two pyridine nitrogen atoms. Mononuclear complexes MLn+ were identified in all systems investigated, but the dinuclear species M2L2n+ were only found with Cu2+ and Ag+. The logarithms of the overall stability constants for the copper and silver complexes are CuL2+, 12.9; Cu2L4+, 18.6; Agl+, 6.3; Ag2L2+, 10.9, respectively. Mononuclear hydroxy species MLOH(n?1)+ were identified in all systems except those of copper and silver. No dinuclear hydroxy complexes were detected. The complexing properties of L are compared to those of the large and less rigid bis-dien.  相似文献   

16.
In contrast to catalytically active metal single atoms deposited on oxide nanoparticles, the crystalline nature of metal‐organic frameworks (MOFs) allows for a thorough characterization of reaction mechanisms. Using defect‐free HKUST‐1 MOF thin films, we demonstrate that Cu+/Cu2+ dimer defects, created in a controlled fashion by reducing the pristine Cu2+/Cu2+ pairs of the intact framework, account for the high catalytic activity in low‐temperature CO oxidation. Combining advanced IR spectroscopy and density functional theory we propose a new reaction mechanism where the key intermediate is an uncharged O2 species, weakly bound to Cu+/Cu2+. Our results reveal a complex interplay between electronic and steric effects at defect sites in MOFs and provide important guidelines for tailoring and exploiting the catalytic activity of single metal atom sites.  相似文献   

17.
The binding energies and valence state of atoms in the perovskite-like compound CaCu3V4O12 have been determined using XPS spectroscopy. The stoichiometry of this phase is formulated as Ca2+Cu2+Cu 2 + (V 2 5+ V 2 4+ O12). Under an air atmosphere, the phase interacts with water vapor and oxygen. As a result, Ca(OH)2 is formed on its surface, the Cu+ and V4+ ion concentrations decrease, and the Cu2+ and V5+ concentrations increase in association. Raman spectra show shortened cation-anion bond lengths and cation-anion-cation bond angles in CaCu3V4O12 compared to perovskite CuVO3; the two structures are alike. The electrical conductivity, magnetic susceptibility, thermal and sensor properties of CaCu3V4O12 in aqueous salt solutions have been studied.  相似文献   

18.
The different coordination behavior of the ligand tBuN=Te(μ-NtBu)2Te=NtBu (L) towards Cu+ and Ag+ results from a cistrans isomerization. The two Cu+ ions in [Cu2L3]2+ (shown schematically) bridge trans and cis isomers of the ligand, whereas the Ag+ ions in [Ag2L2]2+ link two trans ligands and exhibit a weak Ag⋅⋅⋅Ag interaction.  相似文献   

19.
《Tetrahedron》1988,44(11):3295-3308
Unsaturated azo bridged carbocycles 1, 2, 5, 8, 12, 14 and 16 can easily be methylated with Me3OBF4 or MeI. Depending on structural and steric requirement and the anion, the quaternary salts obtained are stable (1-Me+, 2-Me+, 5a-Me+, 14a/b-Me+, 16a/b-Me+ with BF4-), undergo [4+2] cycloreversion (8a-Ne+, 12-Me+) or intramolecular [3+2] cycloaddition after intermediate deprotonation, whereby the unusual hydrazine derivatives, the cage compounds 3-H+ , 4-H+, 6-H+ and 11-H+ are formed. Systems which contain the N=N and C=C function in 1,5-positions are isomeric with their [3,3] rearrangement products, the hydrazones endo-7, endo-10, endo-15 and endo-17. Methylation of the latter provokes the same consecutive reactions as for their azo isomers. These have been demonstrated to be the crucial intermediates for the formation of cage Compound (e.g. endo-7b-Me+ → 5b-Me+ → 6-H+ ). Intermolecular methyl migration of quaternized azo compounds has been established, explaining the high yields of cage compounds which can be produced by the “b-series” only.  相似文献   

20.
A series of Cu+ complexes with ligands that feature varying numbers of benzimidazole/thioether donors and methylene or ethylene linkers between the central nitrogen atom and the thioether sulfur atoms have been spectroscopically and electrochemically characterized. Cyclic voltammetry measurements indicated that the highest Cu2+/Cu+ redox potentials correspond to sulfur‐rich coordination environments, with values decreasing as the thioether donors are replaced by nitrogen‐donating benzimidazoles. Both Cu2+ and Cu+ complexes were studied by DFT. Their electronic properties were determined by analyzing their frontier orbitals, relative energies, and the contributions to the orbitals involved in redox processes, which revealed that the HOMOs of the more sulfur‐rich copper complexes, particularly those with methylene linkers (? N? CH2? S? ), show significant aromatic thioether character. Thus, the theoretically predicted initial oxidation at the sulfur atom of the methylene‐bridged ligands agrees with the experimentally determined oxidation waves in the voltammograms of the NS3‐ and N2S2‐type ligands as being ligand‐based, as opposed to the copper‐based processes of the ethylene‐bridged Cu+ complexes. The electrochemical and theoretical results are consistent with our previously reported mechanistic proposal for Cu2+‐promoted oxidative C? S bond cleavage, which in this work resulted in the isolation and complete characterization (including by X‐ray crystallography) of the decomposition products of two ligands employed, further supporting the novel reactivity pathway invoked. The combined results raise the possibility that the reactions of copper–thioether complexes in chemical and biochemical systems occur with redox participation of the sulfur atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号