共查询到20条相似文献,搜索用时 11 毫秒
1.
有机硅聚醚共聚物功能化处理制备多壁碳纳米管悬浊液 总被引:2,自引:0,他引:2
以有机硅聚醚共聚物(PSPEO)为分散剂, 水为溶剂, 超声波作用下对硝酸纯化的多壁碳纳米管、浓硫酸与浓硝酸组成的混酸剪切的多壁碳纳米管功能化处理, 分别得到1~2.5 mg/mL和3~5 mg/mL的多壁碳纳米管悬浊液. 所得悬浊液有较好的稳定性, 这得益于有机硅聚醚共聚物独特的结构与性能. 用TEM, HRTEM, UV-vis, Raman光谱等技术对多壁碳纳米管悬浊液进行表征, 结果表明5~10 nm的PSPEO覆盖在碳纳米管表面并与碳纳米管强相互作用, 实现了碳纳米管的分散. 相似文献
2.
以多壁碳纳米管为基板,运用简单磁力搅拌方法,通过π-π堆积作用,使1,4-二氨基蒽醌负载于多壁碳纳米管材料上,获得了聚氨基蒽醌/多壁碳纳米管复合物(PDAAQ/MWCNTs)。采用傅立叶红外光谱(FTIR)、透射电子显微镜(TEM)、循环伏安(CV)和恒流充放电(GCD)等方法对PDAAQ/MWCNTs的结构和性能进行表征。结果发现3~4 nm厚的聚氨基蒽醌层原位生长在多壁碳纳米管上,这种独特的结构极大地增加了复合物的比表面积和聚氨基蒽醌的利用率。分散性能好的PDAAQ/MWCNTs复合物具有高的赝容性能。 相似文献
3.
制备了改性多壁碳纳米管/聚乳酸复合材料,研究了改性多壁碳纳米管对聚乳酸的增强作用.通过拉曼光谱分析、热重分析证实了多壁碳纳米管酸化酯化反应的发生.通过溶液法制备了聚乳酸/改性多壁碳纳米管复合物.考察了聚乳酸和改性多壁碳纳米管复合体系的相容性.扫描电镜分析结果说明了聚乳酸和改性多壁碳纳米管复合物相容性的变化.随着改性多壁碳纳米管在复合物中含量的增加,体系的分散效果也越好,相容性也有提高.实验结果表明,在聚乳酸材料中添加改性碳纳米管材料到一定值对,可以提高材料的力学性能,且当改性碳纳米管添加量达到1.5%的时候材料力学性能达到了一个最大值,拉伸强度可达120.4MPa. 相似文献
4.
采用聚酰胺-胺树状分子(PAMAM)“接枝到”这一温和而简单易行的方法修饰多壁碳纳米管(MWCNTs),制备了一种树状分子/碳纳米管(MWCNTs-g-PAMAM)纳米复合材料。在水、甲醇和乙醇等极性溶剂中,该复合材料具有很好的分散性。通过傅立叶变换红外光谱(FTIR)、X-射线光电子能谱(XPS)、热重分析(TGA)和透射电子显微镜(TEM)等对MWCNTs-g-PAMAM纳米复合材料进行了表征。FTIR表明接枝修饰是PAMAM与MWCNTs的共价键结合,TGA数据表明PAMAM成功修饰于MWCNTs侧壁,且接枝到MWCNTs上PAMAM的量随其代数(G1.0~G4.0)的不同而不同,具体顺序为G2.0>G1.0≈G3.0>G4.0. 相似文献
5.
多壁碳纳米管的制备及改性处理 总被引:8,自引:0,他引:8
用自制的镍 硅二元气凝胶作催化剂,合成了多壁碳纳米管.甲烷在680℃催化裂解120min,再升温至800℃继续裂解20min,得到多壁碳纳米管.TEM、HRTEM和Raman光谱分析表明,所得多壁碳纳米管与高定向石墨具有相似的层状结构,其管径分布均匀,约15~30nm左右,长径比大,管端封闭,并含有金属催化剂粒子;采用不同方法改性处理,发现经过稀硝酸浸泡和空气氧化处理后,能去除碳管中金属催化剂,同时碳纳米管管长变短,端帽开口,能有效利用内表面,比表面积增大. 相似文献
6.
为了制备聚合物/碳纳米管复合物,采用聚碳酸酯修饰了多壁碳纳米管。选择聚碳酸环氧丙烷己内酯,聚碳酸亚丁酯己内酯和聚碳酸亚丙酯马来酸酐酯三种聚碳酸酯修饰多壁碳纳米管,仅仅碳酸环氧丙烷己内酯修饰的碳纳米管复合物可分离得到可溶解性产物。分别采用红外光谱、扫描电镜和透射电镜表征了碳纳米管的表面修饰基团及形貌。热重分析表明,可溶解聚碳酸环氧丙烷己内酯修饰多壁碳纳米管相对接枝了较多的聚合物,因此促进了碳纳米管的溶解性,可能是因为聚碳酸环氧丙烷己内酯具有较多的端羟基提高了修饰接枝效果。可溶解聚碳酸环氧丙烷己内酯修饰多壁碳纳米管接枝了生物活性的部分,并具有一定溶解性,在药物载体领域将具有潜在用途。 相似文献
7.
8.
负载于多壁碳纳米管上卟啉锡的可见光催化活性 总被引:1,自引:0,他引:1
采用超声-回流方法制备了反式-二羟基-5,10,15,20-四苯基卟啉锡髧(SnP)和多壁碳纳米管(MWNTs)复合物光催化剂(SnP/MWNTs),用红外光谱、紫外-可见吸收光谱、X射线光电子能谱等方法对其进行了表征。研究了SnP/MWNTs在可见光照射下对罗丹明B催化降解的性能,并结合电化学阻抗谱和伏安特性等测试对其可见光催化降解机理进行了讨论。结果表明,SnP优异的可见光吸收能力结合MWNTs强的电子转移能力,有效地促进了光生电子的转移,使SnP/MWNTs显示出优异的可见光催化活性,可见光照射5h后,对罗丹明B的降解效率达92%。 相似文献
9.
利用卟啉(Hemin)具有模拟酶的功能,与多壁碳纳米管(MWCNTs)构建了一种新型的过氧化氢(H2O2)生物传感器。首先,利用Hemin与MWCNTs之间的π-π键作用,在超声分散下制备Hemin/MWCNTs纳米复合物;采用滴涂技术并在nafion的作用下将其固载在电极表面,制得该H2O2生物传感器(nafion/Hemin/MWCNTs/GCE)。采用紫外-可见分光光度法(UV-Vis)对合成的纳米复合物进行了分析;采用扫描电镜(SEM)对电极的表面形貌进行了表征;采用循环伏安法和计时电流法考察了该修饰电极的电化学行为;并对传感器的行为进行了详细的研究。在最优条件下,此修饰电极对H2O2具有明显的催化作用,电流与H2O2的浓度在6.0×10-71.8×10-3 mol/L范围内呈现良好的线性关系,检出限达2.0×10-7 mol/L。此传感器制作简单,具有较高的灵敏度和良好的稳定性及重现性。 相似文献
10.
利用卟啉(Hemin)具有模拟酶的功能,与多壁碳纳米管(MWCNTs)构建了一种新型的过氧化氢(H2O2)生物传感器。首先,利用Hemin与MWCNTs之间的π-π键作用,在超声分散下制备Hemin/MWCNTs纳米复合物;采用滴涂技术并在nafion的作用下将其固载在电极表面,制得该H2O2生物传感器(nafion/Hemin/MWCNTs/GCE)。采用紫外-可见分光光度法(UV-Vis)对合成的纳米复合物进行了分析;采用扫描电镜(SEM)对电极的表面形貌进行了表征;采用循环伏安法和计时电流法考察了该修饰电极的电化学行为;并对传感器的行为进行了详细的研究。在最优条件下,此修饰电极对H2O2具有明显的催化作用,电流与H2O2的浓度在6.0×10-7~1.8×10-3 mol/L范围内呈现良好的线性关系,检出限达2.0×10-7 mol/L。此传感器制作简单,具有较高的灵敏度和良好的稳定性及重现性。 相似文献
11.
聚氨酯接枝多壁碳纳米管的制备及表征 总被引:3,自引:0,他引:3
采用两步法成功地将聚氨酯分子链以共价键连接到碳纳米管表面. 首先将聚丙烯酰氯通过与强酸氧化后多壁碳纳米管表面产生的羟基及少量羧基之间的化学反应共价接枝到碳纳米管表面; 然后将接枝到碳纳米管表面的聚丙烯酰氯与端羟基聚氨酯发生酯化反应, 实现了聚氨酯对碳纳米管的表面共价接枝. 采用傅里叶变换红外光谱(FTIR)、透射电镜(TEM)、扫描电镜(SEM) 和热重分析(TGA)等对接枝后的产物进行了表征, 结果表明, 聚氨酯已共价接枝到碳纳米管表面, 被接枝的聚合物的含量接近90%. 相似文献
12.
焙烧法纯化多壁碳纳米管 总被引:3,自引:0,他引:3
自碳纳米管[1 ] 发现以来 ,已在世界范围内掀起了碳纳米管研究和应用的热潮 .其中一些文献报道了纯化单壁碳纳米管的方法 ,如超声波助滤法 [2 ] ,酸洗法 [3,4] ,微孔膜过滤法 [5,6] ,离心法[5] ,氧化法[5,7] ;另有少量文献报道了纯化多壁碳纳米管的方法 ,如氧化法 [5,8] ,石墨插层化合物纯化法 [9] 等 .本文使用焙烧法纯化实验室自制的多壁碳纳米管 .通过 TEM、XRD和比表面积等的测定 ,考察了不同焙烧时间的纯化效果 .采用催化甲烷裂解方法 ,在 6 0 0℃反应 4h制得多壁碳纳米管 ,粗产物收率接近 2 0 % .于干燥、洁净的坩埚中 ,分别称取 6… 相似文献
13.
14.
碳纳米管(CNTs)自从1991年被发现以来,以其特有的力学、电学和化学性能以及独特的准一维管状分子结构和在未来高科技领域中所具有的许多潜在应用价值,迅速成为化学、物理及材料科学领域的研究热点[1]。碳纳米管的C-C共价键链段结构与高分子链段结构相似,能通过配位键作用与高分 相似文献
15.
多壁碳纳米管修饰电极的制备及其应用 总被引:6,自引:0,他引:6
研究了多壁碳纳米管修饰电极的制备方法及其对水飞蓟宾的电催化作用。利用循环伏安法和线性扫描法在乙醇-磷酸盐缓冲溶液中(pH=5.56)研究了水飞蓟宾的电化学特性。水飞蓟宾在多壁碳纳米管修饰电极上,于0.64 V处有一不可逆氧化峰,用线性扫描法建立了其定量方法,线性范围为2.0×10-6~1.0×10-4mol/L,检出限为4.4×10-7mol/L。利用该电极建立了水飞蓟宾的定性、定量方法,该法简便、快速、灵敏。 相似文献
16.
17.
合成了5-(4-羟基苯基)-10,15,20-三苯基卟啉锌配合物, 与活化的多壁碳纳米管(MWNT)发生酯化反应, 从而得到金属卟啉有机共价化学修饰的多壁碳纳米管复合物; 利用金属卟啉环上的π电子与多壁碳纳米管管壁上的π电子通过π-π堆积效应, 得到金属卟啉有机非共价修饰的多壁碳纳米管复合物. 通过透射电镜(TEM)考察了金属卟啉-多壁碳纳米管复合物的形貌特征; 通过红外光谱对产物的化学结构进行了表征; 通过紫外光谱、荧光光谱和热失重分析(TGA)对比分析了两类复合物, 发现非共价修饰的金属卟啉-碳纳米管复合物的荧光淬灭率更高, 非共价修饰的金属卟啉-碳纳米管复合物中卟啉的含量比较高. 相似文献
18.
19.
20.
合成了5-(4-羟基苯基)-10,15,20-三苯基卟啉锌配合物,与活化的多壁碳纳米管(MWNT)发生酯化反应,从而得到金属卟啉有机共价化学修饰的多壁碳纳米管复合物;利用金属卟啉环上的π电子与多壁碳纳米管管壁上的π电子通过π-π堆积效应,得到金属卟啉有机非共价修饰的多壁碳纳米管复合物.通过透射电镜(TEM)考察了金属卟啉-多壁碳纳米管复合物的形貌特征;通过红外光谱对产物的化学结构进行了表征;通过紫外光谱、荧光光谱和热失重分析(TGA)对比分析了两类复合物,发现非共价修饰的金属卟啉-碳纳米管复合物的荧光淬灭率更高,非共价修饰的金属卟啉-碳纳米管复合物中卟啉的含量比较高. 相似文献