首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of studying the cosmic ray fluxes in the Earth’s atmosphere and their influence on the atmospheric electricity, as well as the effect of cosmic dust entering the terrestrial atmosphere from the interplanetary space on the Earth’s climate are briefly discussed. A forecast of the climate cooling in the forthcoming 50 years is given.  相似文献   

2.
The large-angle (low-l) correlations of the cosmic microwave background exhibit several statistically significant anomalies compared to the standard inflationary cosmology. We show that the quadrupole plane and the three octopole planes are far more aligned than previously thought (99.9% C.L.). Three of these planes are orthogonal to the ecliptic at 99.1% C.L., and the normals to these planes are aligned at 99.6% C.L. with the direction of the cosmological dipole and with the equinoxes. The remaining octopole plane is orthogonal to the supergalactic plane at 99.6% C.L.  相似文献   

3.
The mechanism for the propagation of strangelets with low baryon number through the atmosphere of the Earth has been explored. It has been shown that, under suitable initial conditions, such strangelets may indeed reach depths near mountain altitudes with mass numbers and charges close to the observed values in cosmic ray experiments.  相似文献   

4.
Results are presented that were obtained by analyzing the arrival directions of E 0 ? 8 × 1018 eV primary cosmic rays recorded at the Yakutsk array over the period between 1974 and 2003 and at the SUGAR array (Australia). The greatest primary-cosmic-ray flux is shown to arrive from the region of visible intersection of the planes of the Galaxy and the Supergalaxy (local supercluster of galaxies) at a galactic longitude of about 137°. On a global scale, the lowest temperature of the cosmic microwave background is typical of this region.  相似文献   

5.
6.
One of the prime pieces of evidence for dark matter is the observation of large overdense regions in the Universe. To account for this observation, perturbations had to have grown since recombination by a factor greater than (1+z*) approximately 1180 where z* is the epoch of recombination. This enhanced growth does not happen in general relativity, and so dark matter is needed in the standard theory. We show here that enhanced growth can occur in alternatives to general relativity, in particular, in Bekenstein's relativistic version of modified Newtonian dynamics.  相似文献   

7.
As is well known, the distribution of the number of cosmic γ-ray bursts (CGBs) as a function of their duration has two maxima. In the present letter it is suggested that the longer-duration but less powerful CGBs arise when two neutron stars merge and a magnetic field is generated, as examined below, and the shorter-duration CGBs can arise as a result of collisions of a black hole either with a neutron star or another black hole. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 7, 417–421 (10 October 1999)  相似文献   

8.
We investigate the Casimir–Polder force acting on a polarizable microparticle in the geometry of a straight cosmic string. In order to develop this analysis we evaluate the electromagnetic field Green tensor on the imaginary frequency axis. The expression for the Casimir–Polder force is derived in the general case of anisotropic polarizability. In dependence on the eigenvalues for the polarizability tensor and of the orientation of its principal axes, the Casimir–Polder force can be either repulsive or attractive. Moreover, there are situations where the force changes the sign with separation. We show that for an isotropic polarizability tensor the force is always repulsive. At large separations between the microparticle and the string, the force varies inversely with the fifth power of the distance. In the non-retarded regime, corresponding to separations smaller than the relevant transition wavelengths, the force decays with the inverse fourth power of the distance. In the case of anisotropic polarizability, the dependence of the Casimir–Polder potential on the orientation of the polarizability tensor principal axes also leads to a moment of force acting on the particle.  相似文献   

9.
The spectrum of ultrahigh energy (above approximately 10(9) GeV) cosmic rays is consistent with the decay of grand unification scale particles. The predicted mass is m(X) = 10(b) GeV, where b = 14.6(+1.6)(-1.7).  相似文献   

10.
Numerous experimental data on cosmic rays sensitive to the spectrum of primary cosmic rays were analyzed in the energy range E>1 TeV. They proved to be incompatible with the pure power-law spectrum of primary particles. The spectral index of the proton spectrum is derived from the data considered. It was found to be 0.4±0.1 greater than for the nuclei with Z≥2. Therefore, the flux of galactic cosmic rays consisting of protons and nuclei with Z≥2 cannot be described by a unified power law in the energy range 0.1–103 TeV.  相似文献   

11.
By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner–Nordström black hole and the Kerr–Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture.  相似文献   

12.
13.
We present the calculations of the atmospheric muon fluxes at energies 10–107 GeV based on a numerical-analytical method for solving the hadron-nucleus cascade equations. It allows the non-power-law behavior of the primary cosmic ray (PCR) spectrum, the violation of Feynman scaling, and the growth of the total inelastic cross sections for hadron-nucleus collisions with increasing energy to be taken into account. The calculations have been performed for a wide class of hadron-nucleus interaction models using directly the PCR measurements made in the ATIC-2 and GAMMA experiments and the parameterizations of the primary spectrum based on a set of experiments. We study the dependence of atmospheric muon flux characteristics on the hadronic interaction model and the influence of uncertainties in the PCR spectrum and composition on the muon flux at sea level. Comparison of the calculated muon energy spectra at sea level with the data from a large number of experiments shows that the cross sections for hadron-nucleus interactions introduce the greatest uncertainty in the energy region that does not include the knee in the primary spectrum.  相似文献   

14.
In the present work a procedure is build up, that allows obtaining dark matter (DM) and cosmic acceleration in our 4D universe embedded in a 5D manifold. Both, DM and the factor causing cosmic acceleration, as well ordinary matter are induced in the 4D space-time by a warped, but empty from matter, 5D bulk. The procedure is carried out in the framework of the Weyl–Dirac version (Israelit, Found Phys 35:1725, 2005; Israelit, Found Phys 35:1769, 2005) of Paul Wesson’s Induced Matter Theory (Wesson, Space-time matter, 1999) enriched by Rosen’s approach (Found Phys 12:213, 1982). Considering chaotically oriented Weyl vector fields, which exist in microscopic cells, we obtain cold dark matter (CDM) consisting of weylons, massive bosons having spin 1. Assuming homogeneity and isotropy at large scale we derive cosmological equations in which luminous matter, CDM and dark energy may be considered separately. Making in the given procedure use of present observational data one can develop a model of the Universe with conventional matter, DM and cosmic acceleration, induced by the 5D bulk.  相似文献   

15.
Flows of material particles, viz., cosmic rays and cosmic dust, are perpetually coming from space into the Earth’s atmosphere; these are particles sized from 0.001 μm to dozens or hundreds of μm. The paper shows that cosmic rays influence the main parameters of the atmosphere’s electricity, and cosmic dust influences global cloudiness, albedo and the Earth’s climate. Original Russian Text ? V.I. Ermakov, V.P. Okhlopkov, Yu.I. Stozhkov, 2009, published in Vestnik Moskovskogo Universiteta. Fizika, 2009, No. 2, pp. 104–106.  相似文献   

16.
The principle of the method for the BESIII TOF calibration using cosmic ray data without magnetic field are reported in this paper. After applying calibration constants, the single-end readout time resolution could reach about 150 ps, and the time resolution for one layer is achieved to be about 110 ps. The paper also described the extraction scheme for the event start time of cosmic events.  相似文献   

17.
18.
In this paper, we have provided an overview of cosmic ray effects on terrestrial processes such as electrical properties, global electric circuit, lightning, cloud formation, cloud coverage, atmospheric temperature, space weather phenomena, climate, etc. It is suggested that cosmic rays control short-term and long-term variations in climate. There are many basic phenomena which need further study and require new and long-term data set. Some of these have been pointed out.  相似文献   

19.
Following Visser’s approach (Visser in Phys. Rev. D 39:3182, 1989; Nucl. Phys. B 328:203, 1989; Lorentzian wormholes. AIP Press, New York, 1996) of cut and paste, we construct Reissner–Nordström thin-shell wormholes by taking the generalized cosmic Chaplygin gas for the exotic matter located at the wormhole throat. The Darmois–Israel conditions are used to determine the dynamical quantities of the system. The viability of the thin-shell wormholes is explored with respect to radial perturbations preserving the spherical symmetry. We find stable as well as unstable Reissner–Nordström thin-shell wormhole solutions depending upon the model parameters. Finally, we compare our results with both generalized and modified Chaplygin gases.  相似文献   

20.
Casimir–Polder potential is investigated for a polarizable microparticle in the geometry of a straight cosmic string with a metallic cylindrical shell. The electromagnetic field Green tensor is evaluated on the imaginary frequency axis. The expressions for the Casimir–Polder potential is derived in the general case of anisotropic polarizability for the both interior and exterior regions of the shell. The potential is decomposed into pure string and shell-induced parts. The latter dominates for points near the shell, whereas the pure string part is dominant near the string and at large distances from the shell. For the isotropic case and in the region inside the shell the both pure string and shell-induced parts in the Casimir–Polder force are repulsive with respect to the string. In the exterior region the shell-induced part of the force is directed toward the cylinder whereas the pure string part remains repulsive with respect to the string. At large distances from the shell the total force is repulsive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号