首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We introduce the concept of quasi-intrinsic angular momentum to denote fields for which the mean value of the angular momentum is unaltered by a lateral shift of the rotation axis but the spectrum changes. This property is exemplified by the orbital angular momentum of a beam of light about its propagation direction. We propose an interferometric experiment to measure efficiently the exact angular momentum spectrum and variance for light beams with any arbitrary spatial distribution.  相似文献   

2.
In the interaction of molecules with light endowed with orbital angular momentum, an exchange of orbital angular momentum in an electric dipole transition occurs only between the light and the center of mass motion; i.e., internal "electronic-type" motion does not participate in any exchange of orbital angular momentum in a dipole transition. A quadrupole transition is the lowest electric multipolar process in which an exchange of orbital angular momentum can occur between the light, the internal motion, and the center of mass motion. This rules out experiments seeking to observe exchange of orbital angular momentum between light beams and the internal motion in electric dipole transitions.  相似文献   

3.
The polarization state of a light beam is related to its spin angular momentum and can be represented on the Poincaré sphere. We propose a sphere for light beams in analogous orbital angular momentum states. Using the Poincaré-sphere equivalent, we interpret the rotational frequency shift for light beams with orbital angular momentum [Phys. Rev. Lett. 80, 3217 (1998)] as a dynamically evolving geometric phase.  相似文献   

4.
Polarized light is a phenomenon familiar to anyone with a pair of polaroid sunglasses. Optical components that change the nature of the polarization from linear to circular are common in any undergraduate laboratory. Probably only physicists know that circularly polarized light carries with it an angular momentum that results from the spin of individual photons. Few physicists realize, however, that a light beam can also carry orbital angular momentum associated not with photon spin but with helical wavefronts. Beams of this type have been studied only over the last decade. In many instances orbital angular momentum behaves in a similar way to spin. But this is not always so: orbital angular momentum has its own distinctive properties and its own distinctive optical components. This article outlines the general behaviour of such beams; how they can be used to rotate microscopic particles; how they interact with nonlinear materials; the role they play in atom-light interactions and how the rotation of such beams results in a measurable frequency shift.  相似文献   

5.
We use a Laguerre-Gaussian laser mode within an optical tweezers arrangement to demonstrate the transfer of the orbital angular momentum of a laser mode to a trapped particle. The particle is optically confined in three dimensions and can be made to rotate; thus the apparatus is an optical spanner. We show that the spin angular momentum of +/-?per photon associated with circularly polarized light can add to, or subtract from, the orbital angular momentum to give a total angular momentum. The observed cancellation of the spin and orbital angular momentum shows that, as predicted, a Laguerre-Gaussian mode with an azimuthal mode index l=1 has a well-defined orbital angular momentum corresponding to ? per photon.  相似文献   

6.
An introduction is given to the concepts of the spin and orbital angular momentum of light beams. Both spin and orbital angular momentum can be transferred from a light beam to particles held within optical tweezers, so forming an optical spanner. Each also give rise to a frequency shift when the light beam is rotated. This arises because quarter or half-wave plates and /2 or mode converters play equivalent roles for spin and orbital angular momentum respectively.  相似文献   

7.
We investigate the linear momentum density of light,which can be decomposed into spin and orbital parts,in the complex three-dimensional field distributions of tightly focused vortex segmented beams.The chosen angular spectrum exhibits two spatially separated vortices of opposite charge and orthogonal circular polarization to generate phase vortices in a meridional plane of observation.In the vicinity of those vortices,regions of negative orbital linear momentum occur.Besides these phase vortices,the occurrence of transverse orbital angular momentum manifests in a vortex charge-dependent relative shift of the energy density and linear momentum density.  相似文献   

8.
王剑  吴家鑫  谢端  蔡达锋  李东霞 《强激光与粒子束》2023,35(5):051003-1-051003-7
目前,具有螺旋相位波前和环状光强分布的涡旋光束已在光学领域获得了广泛应用,其产生与调控自然成了研究的热点。利用三维粒子模拟程序对双色拉盖尔高斯激光驱动固体等离子激发同时携带自旋角动量与轨道角动量的高次谐波的物理过程进行了研究,根据高次谐波产生过程中的光子能量与角动量守恒定律对其内在物理机制进行了理论分析,并讨论了对谐波阶次、偏振态(自旋角动量)以及拓扑荷数(轨道角动量)进行调控的方法。研究结果为开发高亮度、超短超快、短波长、自旋与轨道角动量可调控的涡旋光束辐射源提供了理论依据,在光学微操控、超分辨成像、光通信以及离子加速等领域具有较大的实际应用前景。  相似文献   

9.
We explain that, unlike the spin angular momentum of a light beam which is always intrinsic, the orbital angular momentum may be either extrinsic or intrinsic. Numerical calculations of both spin and orbital angular momentum are confirmed by means of experiments with particles trapped off axis in optical tweezers, where the size of the particle means it interacts with only a fraction of the beam profile. Orbital angular momentum is intrinsic only when the interaction with matter is about an axis where there is no net transverse momentum.  相似文献   

10.
Orbital angular momentum of the coherent beam has been intensively studied and promises potential applications in free space optical communication. But the orbital angular momentum of partially coherent beam is not well known. In this communication the coherent-mode representation method is adopted to describe the partially coherent beam and the orbital angular momentum spectrum is introduced for the partially coherent beam. The characteristics of the orbital angular momentum spectrum of partially coherent beam are discussed. To study the influence of the partial coherence on the optical link, the channel capacity is studied, with two kinds of available mode separators included.  相似文献   

11.
Analysis of the orbital angular momentum of paraxial light beams shows that a key role in the formation of this quantity is played by phase relations between longitudinal and transverse radiation fields. When a light beam is circularly polarized or has a helical wave front, the azimuthal component of the Poynting vector and the density of orbital angular momentum prove to be non-zero. In the case of circularly polarized radiation, the azimuthal component of the Poynting vector and the density of the orbital angular momentum can change the sign at different points in the cross section of the light beam, while the total orbital momentum of the beam remains quantized.  相似文献   

12.
张洪宪  赵珩 《光子学报》2008,37(8):1679-1683
从傍轴条件下光束轨道角动量的基本理论出发,根据高阶椭圆厄密–高斯光束的光场分布,运用张量方法,对高阶椭圆厄密-高斯光束轨道角动量的密度分布进行了理论分析,得到了求解该密度分布的计算公式,并在给定参量条件下作了数值模拟.进一步对光束中每个光子携带的平均轨道角动量进行了计算,发现其值随着椭圆厄密-高斯光束阶次的增大而增大,表明高阶椭圆厄密-高斯光束能够比椭圆高斯光束或拉盖尔-高斯光束提供高得多的轨道角动量.  相似文献   

13.
The transformation of the angular momentum of an optical eddy in a weakly directing perturbed optical fiber is analyzed within the spin-orbit operator representation. The case of fibers with anisotropy of the core and cladding materials and the case of fibers with an elliptic cross section are considered. The spectrum of polarization corrections to the scalar propagation constant is determined for fibers of two types. For both the strongly anisotropic and elliptic fibers, the spin angular momentum of the linearly polarized LV eddy is suppressed and the orbital angular momentum is characterized by simple oscillations with a beating length dependent only on the spin-orbit parameter of an unperturbed fiber. The orbital and spin angular momenta of the circularly polarized CV eddy in the anisotropic fiber interchange in the elliptic fiber. The orbital angular momentum can be completely restored in the strongly anisotropic fiber, whereas only the spin angular momentum is completely restored in the elliptic fiber.  相似文献   

14.
We present an efficient method for probing the orbital angular momentum of optical vortices of arbitrary sizes. This method, based on a multipoint interferometer, has its most important application in measuring the orbital angular momentum of light from astronomical sources, opening the way to interesting new astrophysics. We demonstrate its viability by measuring the orbital angular momentum of Laguerre-Gaussian laser beams.  相似文献   

15.
16.
We generate intensity-difference-squeezed Laguerre-Gauss twin beams of light carrying orbital angular momentum by using four-wave mixing in a hot atomic vapor. The conservation of orbital angular momentum in the four-wave mixing process is studied as well as the spatial distribution of the quantum correlations obtained with different configurations of orbital angular momentum. Intensity-difference squeezing of up to -6.7 dB is demonstrated with beams carrying orbital angular momentum. Delocalized spatial correlations between the twin beams are observed.  相似文献   

17.
Osamu Yamashita 《Optics Communications》2012,285(13-14):3061-3065
We calculate the intrinsic spin and extrinsic orbital angular momentum densities of an electromagnetic plane wave propagating in a helically wound optical fiber. The geometrical phase shift of the extrinsic angular momentum density of light traveling in such a fiber is derived analytically and discussed in comparison with that of the intrinsic angular momentum density.  相似文献   

18.
陈理想  张远颖 《物理学报》2015,64(16):164210-164210
光子既是经典信息也是量子信息的理想载体. 单个光子不仅可以携带自旋角动量(与光波的圆偏振相关), 还可以携带轨道角动量(与光波的螺旋相位相关). 而轨道角动量的重要意义在于可利用单个光子的量子态构建一个高维的Hilbert空间, 从而实现高维量子信息的编码. 自Allen等于1992年确认光子轨道角动量的物理存在以来, 轨道角动量在经典光学和量子光学领域展现了诸多诱人的应用前景, 目前已成为国际光学领域的研究热点之一. 本综述将着重介绍高阶轨道角动量光束的制备与调控技术, 特别是高阶轨道角动量的量子纠缠态操控、旋转Doppler 效应测量及其在远程传感和精密测量技术中的应用.  相似文献   

19.
《Physics letters. A》2020,384(14):126284
We report a study of the momentum, angular momentum, and helicity of circularly polarized Airy beams propagating in free space. By using the vector angular spectrum representation, the explicit analytical expressions for the electric and magnetic field components of circularly polarized Airy beams are derived in detail. To overcome the drawbacks of classical kinematics formulae when applied to structured light beams, a general canonical approach is introduced to describe the momentum, angular momentum and helicity of Airy beams. Numerical simulation results for the spatial distributions of the canonical momentum, spin and orbital angular momentum, as well as the helicity densities are presented and discussed. This study may provide useful insights into the dynamical properties of Airy beams that may be important in several applications, including the optical control, micromanipulation, and information processing.  相似文献   

20.
杨双燕  王婷婷  李春芳 《光学学报》2012,32(6):626002-226
介绍了非近轴光束的表示理论,利用该表示理论很好地解决了非近轴光束的角动量问题,发现非近轴光束的总角动量可以严格地分解成自旋和轨道两部分,但是两者都依赖于由偏振椭圆度表征的光束的偏振状态。主要研究了柱矢量光束的角动量问题。给出了动量空间和位形空间中的柱矢量光束表达式和角动量算符表达式。通过分析两个空间中的角动量算符及柱矢量光束表达式,发现在这两种空间中,具有螺旋型相位的柱矢量光束是角动量算符沿着传播方向的分量的本征态,其本征值与偏振椭圆度无关,这为计算这类特殊光束的角动量提供了一种新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号