首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
采用密度泛函理论在B3LYP/6-311++G** (范德华校正)水平上研究乙二醇在气相中分别与乙腈、丙酮、四氢呋喃、水、乙二醇形成氢键二聚体的结构性质,根据PCM 极化统一场模型讨论氢键溶剂效应。结果表明,五种氢键二聚体分子中的氢键属于红移氢键,溶剂使氢键二聚体分子的偶极矩变大,并对OH振动频率的影响不大。  相似文献   

2.
采用密度泛函理论在B3LYP/6-311++G~(**)水平上研究乙二醇在气相中分别与乙腈、丙酮、四氢呋喃、水、乙二醇形成氢键二聚体的结构性质,根据PCM(polarized continuum model)极化统一场模型讨论氢键溶剂效应.结果表明,五种氢键二聚体分子中的氢键属于红移氢键,溶剂使氢键二聚体分子的偶极矩变大,并对OH振动频率的影响不大.  相似文献   

3.
The adsorption of water on a fully hydroxylated silica surface is studied by using density-functional total-energy and molecular dynamics calculations. The (100) surface of beta(alpha)-cristobalite covered by geminal hydroxyls has been taken as the substrate. A well-ordered and stable two-dimensional ice with quadrangular and octagonal patterns of hydrogen bond (H-bond) networks-an ice tessellation-is found on the surface for the first time. With the vibrational recognition, the four water molecules in the quadrangle are found to be bonded by strong H bonds while the quadrangles are connected to each other by weak H bonds. This configuration is the most stable, because all the water molecules are fully saturated with H bonds either to each other or to the surface hydroxyl groups.  相似文献   

4.
The time‐dependent density functional theory (TDDFT) method was performed to investigate the excited‐state hydrogen bonding dynamics of 4‐amino‐1,8‐naphthalimide (4ANI) as hydrogen bond acceptor in hydrogen donating methanol (MeOH) solvent. The ground‐state geometry optimizations, electronic transition energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated 4ANi and hydrogen‐bonded 4ANi‐(MeOH)1,4 complexes were calculated by the DFT and TDDFT methods, respectively. We demonstrated that the intermolecular hydrogen bond C═O···H–O and N–H···O–H in the hydrogen‐bonded 4ANi‐(MeOH)1,4 is strengthened in the electronically excited state, because the electronic excitation energies of the hydrogen‐bonded complex are correspondingly decreased compared with that of the isolated 4ANi. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electronically excited state of fluorescent dye in hydrogen‐donating solvents exists in many other systems in solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Neutron Compton scattering measurements presented here of the momentum distribution of hydrogen in KH2PO4 just above and well below the ferroelectric transition temperature are sufficiently sensitive to show clearly that the proton is coherent over both sites in the high temperature phase, a result that invalidates the commonly accepted order-disorder picture of the transition. The Born-Oppenheimer potential for the hydrogen, extracted directly from data for the first time, is consistent with neutron dif-fraction data, and the vibrational spectrum is in substantial agreement with infrared absorption measurements. The measurements are sensitive enough to detect the effect of surrounding ligands on the hydrogen bond, and can be used to study the systematic effect of the variation of these ligands in other hydrogen bonded systems.  相似文献   

6.
A concentration‐dependent Raman study of the ν(C Br) stretching and trigonal bending modes of 2‐ and 3‐Br‐pyridine (2Br‐p and 3Br‐p) in CH3OH was performed at different mole fractions of the reference molecule, 2Br‐p/3Br‐p, from 0.1 to 0.9 in order to understand the origin of blue/red wavenumber shifts of the vibrational modes due to hydrogen‐bond formation. The appearance of additional Raman bands in these binary systems at ∼617 cm−1in the case of 2Br‐p and at ∼618 cm−1 in the case of 3Br‐p compared to neat bromopyridine derivatives were attributed to specific hydrogen‐bonded complexes formed in the mixtures. The interpretation of experimental results is supported by density functional calculations on optimized geometries and vibrational wavenumbers of 2Br‐p and 3Br‐p and a series of hydrogen‐bonded complexes with methanol. The parameters obtained from these calculations were used for a qualitative explanation of the blue/red shifts. The wavenumber shifts and linewidth changes for the ν(C Br) stretching and trigonal bending modes as a function of concentration reveal that the caging effects leading to motional narrowing and diffusion‐causing line broadening are simultaneously operative, in addition to the blue shift caused due to hydrogen bonding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of pressure on translational and rotational diffusion in liquid ammonia are investigated by means of molecular dynamics simulations. Calculations are done at two different temperatures and at many different pressures by using a two-part protocol involving molecular dynamics in isobaric-isothermal ensemble in the first part and in microcanonical ensemble in the second part. Our results are analyzed in terms of pressure-induced changes in structural properties such as packing and hydrogen bond properties. Also, the present results of liquid ammonia are compared with corresponding results for other hydrogen bonded liquids that were reported in recent years.   相似文献   

8.
Hydrogen bonding is one of the most important and ubiquitous interactions present in Nature. Several studies have attempted to characterise and understand the nature of this very basic interaction. These include both experimental and theoretical investigations of different types of chemical compounds, as well as systems subjected to high pressure. The O–H..O bond is of course the best studied hydrogen bond, and most studies have concentrated on intermolecular hydrogen bonding in solids and liquids. In this paper, we analyse and characterise normal hydrogen bonding of the general type, D–H...A, in intramolecular hydrogen bonding interactions. Using a first-principles density functional theory approach, we investigate low energy conformers of the twenty α-amino acids. Within these conformers, several different types of intramolecular hydrogen bonds are identified. The hydrogen bond within a given conformer occurs between two molecular groups, either both within the backbone itself, or one in the backbone and one in the side chain. In a few conformers, more than one (type of) hydrogen bond is seen to occur.

Interestingly, the strength of the hydrogen bonds in the amino acids spans quite a large range, from weak to strong. The signature of hydrogen bonding in these molecules, as reflected in their theoretical vibrational spectra, is analysed. With the new first-principles data from 51 hydrogen bonds, various parameters relating to the hydrogen bond, such as hydrogen bond length, hydrogen bond angle, bond length and vibrational frequencies are studied. Interestingly, the correlation between these parameters in these bonds is found to be in consonance with those obtained in earlier experimental studies of normal hydrogen bonds on vastly different systems. Our study provides some of the most detailed first-principles support, and the first involving vibrational frequencies, for the universality of hydrogen bond correlations in materials.  相似文献   

9.
Vibrational spectral analysis of the hydrogen‐bonded nonlinear optical (NLO) material p‐bromo acetanilide (PBA) was carried out using NIR‐FT‐Raman and FT‐IR spectroscopy. Ab initio molecular orbital computations were performed at HF/6‐31G (d) level to derive equilibrium geometry, vibrational wavenumbers, intensities and first hyperpolarizability. The lowering of the imino stretching wavenumbers suggests the existence of strong intermolecular N H···O hydrogen bonding, which was substantiated by the natural bond orbital (NBO) analysis. The vibrational spectra confirm that the charge‐transfer interaction between the  NHCOCH3 group and—Br through phenyl ring is responsible for simultaneous strong IR and Raman activation of the ring mode 8a. Vibrational analysis indicates that the lowering of stretching wavenumbers of methyl group due to electronic effects simultaneously caused by induction and hyperconjugation is due to the presence of the oxygen atom. The presence of blue‐shifting H‐bonds of CH stretching wavenumbers, simultaneous activation of carbonyl stretching mode, the strong activity of low‐wavenumber H‐bond stretching vibrations and the role of intramolecular charge transfer in making the molecule NLO active have been analyzed on the basis of the vibrational spectral features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
彭亚晶  孙爽  宋云飞  杨延强 《物理学报》2018,67(2):24208-024208
构建时间分辨相干反斯托克斯拉曼散射(CARS)光谱系统,从微观层次研究硝基甲烷的分子相干振动动力学特性.实验中采用超连续白光作为斯托克斯光,通过调整斯托克斯光的时间延迟,得到不同振动模式的CARS光谱.通过对振动弛豫曲线的拟合,获得硝基甲烷分子不同振动模式的振动失相时间.结果表明C–H键伸缩振动比C–N键伸缩振动更容易受热声子的影响.在热加载下,硝基甲烷分子的C–H键有望首先被激发并引起初始化学反应.  相似文献   

11.
用二阶微扰理论结合6-311+G**、6-311++G**和6-311++G(2d,2p)基组对氢键相互作用二聚体HNO···HArF进行研究.在MP2/6-311+G**、MP2/6-311++G**和MP2/6-311++G(2d,2p)水平上,利用标准方法和均衡校正方法对二聚体进行了几何优化、振动频率和相互作用能的计算.对于相互作用能采用G2MP2方法计算.计算结果表明存在两种稳定的二聚体HNO···HArF结构,在这两种结构中,Dimer I(H···F)比Dimer II(H···O)更加稳定.通过振动频率的计算表明,在Dimer I(H···F)中存在N-H···F蓝移氢键,在DimerII(H···O)中存在Ar-H···O红移氢键,并对蓝移氢键加以确认.利用电子密度拓扑学分析和自然键轨道分析对于氢键红移和蓝移进行了合理解释.  相似文献   

12.
Single crystals of sarcosinium oxalate monohydrate (SOM) are grown by the slow-evaporation technique at ambient temperature, and vibrational spectroscopic analysis is carried out using NIR-FT Raman, FT-IR, and SERS spectra. The normal mode frequencies and corresponding vibrational analysis of SOM are examined theoretically using the Gaussian’98 set of quantum chemical codes. The two bands present in the SOM ν C=O region, clearly observed in the Raman spectrum, are assigned to “free” and “bonded” carbonyl groups with the hydrogen atom. Vibrational analysis indicates the presence of C-H—O hydrogen bonding interaction producing a blueshift of the C-H stretching frequency.  相似文献   

13.
The spectral and luminescent properties and the photolysis of 1: 3 hydrogen bonded complexes of methyl[(4-aminophenyl)sulfonyl]carbamate (asulam) with water are studied with the aid of methods of quantum chemistry using the theory of intramolecular photophysical processes. It is shown that the formation of hydrogen bonds does not have a large effect on the spectral and luminescent properties of asulam. The breaking of the C-S and N-S bonds occurs according to the predissociation mechanism in electronically excited states localized on the bonds to be broken. In singlet photodissociative states, the N-S bond is more likely to break than the C-S bond, with the bond breaking being independent of the excitation energy. The formation of hydrogen bonded complexes increases the rate of population of photodissociative states, and, therefore, one can assume that the photoreaction efficiency increases.  相似文献   

14.
The time‐dependent density functional theory (TDDFT) method has been performed to investigate the excited state and hydrogen bonding dynamics of a series of photoinduced hydrogen‐bonded complexes formed by (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate with water molecules in vacuum. The ground state geometric optimizations and electronic transition energies as well as corresponding oscillator strengths of the low‐lying electronic excited states of the (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate monomer and its hydrogen‐bonded complexes O1‐H2O, O2‐H2O, and O1O2‐(H2O)2 were calculated by the density functional theory and TDDFT methods, respectively. It is found that in the excited states S1 and S2, the intermolecular hydrogen bond formed with carbonyl oxygen is strengthened and induces an excitation energy redshift, whereas the hydrogen bond formed with phenolate oxygen is weakened and results in an excitation energy blueshift. This can be confirmed based on the excited state geometric optimizations by the TDDFT method. Furthermore, the frontier molecular orbital analysis reveals that the states with the maximum oscillator strength are mainly contributed by the orbital transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital. These states are of locally excited character, and they correspond to single‐bond isomerization while the double bond remains unchanged in vacuum.  相似文献   

15.
冯页新  陈基  李新征  王恩哥 《中国物理 B》2016,25(1):13104-013104
The hydrogen bond(HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous,and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects(NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice.  相似文献   

16.
Dynamic properties of supercritical water at temperatures between 573 and 773 K and densities between 0.49 and 0.83 g/cm(3) have been investigated by molecular dynamics simulation and compared to states located on the vapor-liquid coexistence curve. A flexible simple point charge potential has been assumed for interactions in the subcritical states, whereas a reparameterization of that model has been performed to model the supercritical states. The hydrogen bonding structure and the diffusion coefficients in an ensemble of simulated states were previously analyzed and a good agreement with available experimental data was found. Dynamic properties of hydrogen bonding like the bond lifetimes and the influence of hydrogen bonds in the vibrational spectra are discussed along a range of simulation conditions. A nonlinear behavior of the hydrogen-bond lifetime as a function of temperature is observed in subcritical water whereas a linear dependence is found in supercritical water. Special attention is paid to the intermolecular vibrational spectrum (10-400 cm(-1)). It has been observed that the mode centered at 200 cm(-1), attributed to the intermolecular O-O stretching vibration in the ambient state remains active in the supercritical states.  相似文献   

17.
The intermolecular interactions in amylose/dimethyl sulfoxide (DMSO) complexes are discussed both experimentally and theoretically by means of Raman and infrared spectroscopies. The study is based on a preliminary analysis of well known systems such as pure liquid DMSO or DMSO in mixture with water: for such systems, an analysis of the CS stretching region is carried out both by means of Raman and infrared spectra. In particular, Raman spectra reveal a high sensitivity to the strength and to the type of interaction involving the DMSO molecules. These results, applied to the investigation of amylose‐DMSO complexes, show the presence of different hydrogen‐bonded complexes which coexist in this compound. In particular, DMSO molecules are identified both on the external surface of the V‐amylose helix, where they can interact via one hydrogen bond and in the inner channel of the helix where they can interact via two hydrogen bonds. The present findings open the possibility of applying vibrational spectroscopy to the characterization of inclusion compounds of amylose which are currently being involved in many fields of nanosciences. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Infrared (IR) absorption measurements are employed to investigate the vibrational spectra of propylene glycol (PG) and its oligomers the poly(propylene glycols) (PPGs) with different molecular weights (425 and 725 Da) in the OH stretching region. The goals are to identify the intramolecular, hydrogen bond imposed, sub-band and to connect the various sub-bands to different intermolecular aggregates originated by the existence of the hydrogen bond potential. The observed experimental data, compared with those of previous IR measurements on other similar polymers, ethylene glycol (EG) and poly(ethylene glycols) (PEGs), confirm the role played by the hydrogen bond in the structure of these liquids, discussed on the basis of current theories for associated systems.  相似文献   

19.
《Surface science》1992,262(3):L96-L100
High resolution Si 2p gas phase photoelectron spectroscopy has been used to measure the vibrational energy spacing in SiH4 (0.295 eV) and SiD4 (0.212 eV). These values are compared with those measured for the chemical shift (0.30 eV/hydrogen atom) of model compounds which mimic the effects of zero, one, two and three hydrogen atoms bonded to a silicon atom on a silicon surface. Implications for the interpretation of surface photoelectron spectra are discussed.  相似文献   

20.
《Surface science》1995,344(3):L1252-L1258
The dynamics of vibrational heating and desorption induced by multiple inelastic hot electron scatterings is investigated by a microscopic quantum mechanical approach. Numerical simulations are found to be in good agreement with experimental results of O2 desorbed from Pt(111) by femtosecond laser pulses. The subpicosecond response time of the desorption probability is shown to arise directly from the dynamics of vibrational heating of the molecule-surface bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号