首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of passive colloidal tracers in a bath of self-propelled particles is receiving a lot of attention in the context of nonequilibrium statistical mechanics. Here we demonstrate that active baths are also capable of mediating effective interactions between suspended bodies. In particular we observe that a bath of swimming bacteria gives rise to a short range attraction similar to depletion forces in equilibrium colloidal suspensions. Using numerical simulations and experiments we show how the features of this interaction arise from the combination of nonequilibrium dynamics (peculiar of bacterial baths) and excluded volume effects.  相似文献   

2.
涂展春 《物理》2014,43(07):453-459
热力学是一个古老的课题,古典热力学以宏观的具有大粒子数的系统为研究对象,自17世纪以来,科学家们构建了热力学的完备公理化体系。将热力学推广至小系统是近三十年来的研究前沿。文章介绍小系统的非平衡统计力学以及小系统的随机热力学。作为研究案例,利用时间依赖的谐振子势场控制单个粒子来构造随机热机的类卡诺循环,并发现该热机最大功率对应的效率等于1-,其中TcTh分别对应于低温热库和高温热库的温度。  相似文献   

3.
A model for self-propulsion of a colloidal particle--the osmotic motor--immersed in a dispersion of "bath" particles is presented. The nonequilibrium concentration of bath particles induced by a surface chemical reaction creates an osmotic pressure imbalance on the motor causing it to move. The ratio of the speed of reaction to that of diffusion governs the bath particle distribution which is employed to calculate the driving force on the motor, and from which the self-induced osmotic velocity is determined. For slow reactions, the self-propulsion is proportional to the reaction velocity. When surface reaction dominates over diffusion the osmotic velocity cannot exceed the diffusive speed of the bath particles. Implications of these features for different bath particle volume fractions and motor sizes are discussed. Theoretical predictions are compared with Brownian dynamics simulations.  相似文献   

4.
The translational nonequilibrium zone in a shock wave is considered for a gas consisting of light particles and a small addition of heavy particles. The gas is taken to be two-dimensional, and long-range forces are assumed to be absent. In the framework of this approximation, a program for molecular dynamics simulation of the gas is developed. It is applied to calculate a particle distribution function in the shock wave, to analyze the time evolution of the distribution function, and to study its dependence on the gas composition.  相似文献   

5.
The Kaplan-Yorke information dimension of phase-space attractors for two kinds of steady nonequilibrium many-body flows is evaluated. In both cases a set of Newtonian particles is considered which interacts with boundary particles. Time-averaged boundary temperatures are imposed by Nose-Hoover thermostat forces. For both kinds of nonequilibrium systems, it is demonstrated numerically that external isothermal boundaries can drive the otherwise purely Newtonian flow onto a multifractal attractor with a phase-space information dimension significantly less than that of the corresponding equilibrium flow. Thus the Gibbs' entropy of such nonequilibrium flows can diverge.  相似文献   

6.
We present the reduced dynamics of a bead in a Rouse chain which is submerged in a bath containing a driving agent that renders it out-of-equilibrium. We first review the generalized Langevin equation of the middle bead in an equilibrated bath. Thereafter, we introduce two driving forces. Firstly, we add a constant force that is applied to the first bead of the chain. We investigate how the generalized Langevin equation changes due to this perturbation for which the system evolves towards a steady state after some time. Secondly, we consider the case of stochastic active forces which will drive the system to a nonequilibrium state. Including these active forces results in an extra contribution to the second fluctuation–dissipation relation. The form of this active contribution is analysed for the specific case of Gaussian, exponentially correlated active forces. We also discuss the resulting rich dynamics of the middle bead in which various regimes of normal diffusion, subdiffusion and superdiffusion can be present.  相似文献   

7.
A model of a Brownian ratchet coupled to a heat bath and driven by a nonequilibrium Poisson white noise is discussed. The formula describing a generated current in terms of the statistical properties of a possible irregular or random potential is derived within the small nonequilibrium noise approximation and illustrated by a few concrete examples. The perturbation technique for Hilbert space operators is used as a mathematical tool.  相似文献   

8.
A. N. Morozov 《JETP Letters》2018,107(12):798-799
A model implying that particles of a medium are subjected to external forces with a flicker noise spectrum has been proposed to describe fluctuations in locally nonequilibrium physical media. The Langevin equation with additional integral terms describing the action of the locally nonequilibrium medium has been derived. The spectral density of fluctuations of an electric current flowing in the locally nonequilibrium medium has been calculated. It has been found that this density in the low-frequency spectral range is flicker noise.  相似文献   

9.
J. M. Rubí  P. Mazur   《Physica A》1998,250(1-4)
A system of N Brownian particles suspended in a nonuniform heat bath is treated as a thermodynamic system with internal degrees of freedom, in this case their velocities and coordinates. Applying the scheme of nonequilibrium thermodynamics, one then easily obtains the Fokker-Planck equation for simultaneous Brownian motion of N particles in a temperature gradient. This equation accounts for couplings in the motion as a result of hydrodynamic interactions between particles.  相似文献   

10.
We report on a Monte Carlo study of ordering in a nonequilibrium system. The system is a lattice gas that comprises two equal, parallel square lattices with stochastic particle-conserving irreversible dynamics. The particles are driven along a principal direction under the competition of the heat bath and a large, constant external electric field. There is attraction only between particles on nearest-neighbor sites within the same lattice. Particles may jump from one plane to the other; therefore, density fluctuations have an extra mechanism to decay and build up. It helps to obtain the steady-state accurately. Spatial correlations decay with distance according to a power law at high enough temperature, as for the ordinary two-dimensional case. We find two kinds of nonequilibrium phase transitions. The first one has a critical point for half occupation of the lattice, and seems to be related to the anisotropic phase transition reported before for the plane. This transition becomes discontinuous for low enough density. The difference of density between the planes changes discontinuously for any density at a lower temperature. This seems to correspond to a phase transition that does not have a counterpart in equilibrium nor in the two-dimensional nonequilibrium case.  相似文献   

11.
12.
Using the nonequilibrium statistical operator obtained in the preceding paper of the authors [1], equations describing the kinetics of nucleation in a nonequilibrium medium are derived. A Fokker-Planck equation is found for embryo distribution functions in the number of particles, energy, momentum, and c.m. coordinates with additional random forces due to non equilibrium processes in the medium. Hydrodynamic equations are obtained for the medium with account of thermodynamic forces due to discontinuities of thermodynamic parameters at the interphase boundary. The symmetry of cross (interphase) kinetic coefficients is considered.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 44–52, May, 1978.  相似文献   

13.
The main ideas and methods of calculations within the framework of the generating functional technique are considered in a systematical way. The nonequilibrium generating functionals are defined as functional mappings of the nonequilibrium statistical operator and so appear to be dependent on a certain set of macroscopic variables describing the nonequilibrium state of the system. The boundary conditions and the differential equation of motion for the generating functionals are considered which result in an explicit expression for the nonequilibrium generating functionals in terms of the so-called coarse-grained generating functional being the functional mapping of the quasiequilibrium statistical operator. Various types of integral equations are derived for the generating functionals which are convenient to develop the perturbation theories with respect to either small interaction or small density of particles. The master equation for the coarse-grained generating functionals is obtained and its connection with the generalized kinetic equations for a set of macrovariables is shown. The derivation of the generalized kinetic equations for some physical systems (classical and quantum systems of interacting particles, the Kondo system) is treated in detail, with due regard for the polarization effects as well as the energy and momentum exchange between the colliding particles and the surrounding media.  相似文献   

14.
Statistical mechanics is a powerful method for understanding equilibrium thermodynamics. An equivalent theoretical framework for nonequilibrium systems has remained elusive. The thermodynamic forces driving the system away from equilibrium introduce energy that must be dissipated if nonequilibrium steady states are to be obtained. Historically, further terms were introduced, collectively called a thermostat, whose original application was to generate constant-temperature equilibrium ensembles. This review surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by inert matter particles and living entities. The introduction of deterministic thermostats allows to model the onset of nonequilibrium stationary states that are typical of most real-world complex systems. The first part of the paper is focused on a general presentation of the main physical and mathematical definitions and tools: nonequilibrium phenomena, Gauss least constraint principle and Gaussian thermostats. The second part provides a review of a variety of thermostatted mathematical models in physics and life sciences, including Kac, Boltzmann, Jager–Segel and the thermostatted (continuous and discrete) kinetic for active particles models. Applications refer to semiconductor devices, nanosciences, biological phenomena, vehicular traffic, social and economics systems, crowds and swarms dynamics.  相似文献   

15.
We study the nonequilibrium steady state realized in a general stochastic system attached to multiple heat baths. Starting from the detailed fluctuation theorem, we derive concise and suggestive expressions for the corresponding stationary distribution which are correct up to the second order in thermodynamic forces. The probability of a microstate eta is proportional to exp[Phi(eta)] where Phi(eta)=-[under summation operator]kbeta_{k}E_{k}(eta) is the excess entropy change. Here, E_{k}(eta) is the difference between two kinds of conditioned path ensemble averages of excess heat transfer from the kth heat bath whose inverse temperature is beta_{k}. This result can be easily extended to steady states maintained with other sources, e.g., particle current driven by an external force. Our expression may be verified experimentally in nonequilibrium states realized, for example, in mesoscopic systems.  相似文献   

16.
《Physics letters. A》1998,249(4):281-285
Thermal ratchets are Brownian models where time-correlated fluctuations coming from a nonequilibrium bath interacting with a spatial asymmetry are sufficient conditions to give rise to transport. The nonequilibrium bath acts as a source of negentropy (physical information). In order to quantitate the transfer of information that occurs in thermal ratchet motion, the Kolmogorov information entropy or algorithmic complexity is investigated. The complexity is measured in terms of the average number of bits per time unit necessary to specify the sequence generated by the system.  相似文献   

17.
We probe nonequilibrium properties of an active bacterial bath through measurements of correlations of passive tracer particles and the response function of a driven, optically trapped tracer. These measurements demonstrate violation of the fluctuation-dissipation theorem and enable us to extract the power spectrum of the active stress fluctuations. In some cases, we observe 1/sqrt[omega] scaling in the noise spectrum which we show can be derived from a theoretical model incorporating coupled stress, orientation, and concentration fluctuations of the bacteria.  相似文献   

18.
The results of a numerical study of the dynamics of interacting particles in cluster systems under the action of an external perturbing field on them are presented. The relaxation rates and characteristic relaxation times of a cluster to its equilibrium state are analyzed. The conditions for the formation of dynamical structures of charged particles in the field of external nonpotential forces are investigated. The peculiarities of diagnosing the pair potential of particles in nonequilibrium systems are considered. The numerical simulation conditions for the problem were close to the conditions of experiments in a dusty plasma.  相似文献   

19.
We study the relaxation of a test particle immersed in a bath of field particles interacting via weak long-range forces. To order 1/N in the N→+∞ limit, the velocity distribution of the test particle satisfies a Fokker-Planck equation whose form is related to the Landau and Lenard-Balescu equations in plasma physics. We provide explicit expressions for the diffusion coefficient and friction force in the case where the velocity distribution of the field particles is isotropic. We consider (i) various dimensions of space d=3,2 and 1; (ii) a discret spectrum of masses among the particles; (iii) different distributions of the bath including the Maxwell distribution of statistical equilibrium (thermal bath) and the step function (water bag). Specific applications are given for self-gravitating systems in three dimensions, Coulombian systems in two dimensions and for the HMF model in one dimension.  相似文献   

20.
By Monte Carlo simulations, the effect of the dispersion of particle size distribution on the spatial density distributions and correlations of a quasi one-dimensional polydisperse granular gas with fractal size distribution is investigated in the same inelasticity. The dispersive degree of the particle size distribution can be measured by a fractal dimension dr, and the smooth particles are constrained to move along a circle of length L, colliding inelastically with each other and thermalized by a viscosity heat bath. When the typical relaxation time τ of the driving Brownian process is longer than the mean collision time To, the system can reach a nonequilibrium steady state. The average energy of the system decays exponentially with time towards a stable asymptotic value, and the energy relaxation time τB to the steady state becomes shorter with increasing values of df. In the steady state, the spatial density distribution becomes more clusterized as df increases, which can be quantitatively characterized by statistical entropy of the system. Furthermore, the spatial correlation functions of density and velocities are found to be a power-law form for small separation distance of particles, and both of the correlations become stronger with the increase of df. Also, tile density clusterization is explained from the correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号