首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we review our recent study of coherent electronic properties of coupled two-dimensional quantum dot arrays using numerical exact-diagonalization methods on a Mott–Hubbard type correlated tight-binding model. We predict the existence of a novel kind of persistent current in a two-dimensionalisolatedarray of quantum dots in a transverse magnetic field. We calculate the conductance spectrum for resonant tunneling transport through a coherent two-dimensional array of quantum dots in the Coulomb Blockade regime. We also calculate the effective two-terminal capacitance of an array coupled to bias leads.  相似文献   

2.
Ballistic transport in an open small (100 nm) three-terminal quantum dot has been analyzed. The dot is based on the high-mobility 2D electron gas of the AlGaAs/GaAs heterojunction. It has been shown that the gate oscillations of the resistance of such a dot arise due to the coherent scattering of electrons on its quasidiscrete levels and these oscillations are suppressed by a weak magnetic field.  相似文献   

3.
吴绍全  方栋开  赵国平 《物理学报》2015,64(10):107201-107201
从理论上研究了平行双量子点系统中的电子关联效应对该系统磁输运性质的影响. 基于广义主方程方法, 计算了通过此系统的电流、微分电导和隧穿磁阻. 计算结果表明: 电子自旋关联效应可以促发一个很大的隧穿磁阻, 而电子库仑关联效应不仅可以压制电子自旋关联效应, 还可以导致负隧穿磁阻和负微分电导的出现. 对相关的基本物理问题进行了讨论.  相似文献   

4.
《中国物理 B》2021,30(7):78505-078505
We present a phase-and spin-dependent manipulation of leakage of a Majorana mode into a double quantum dot. We study the density of states(DOS) to show the effect of phase change factor on the Majorana leakage into(out) of a double quantum dot. The DOS is derived from the Green's function of the quantum dot by the equation of motion method, and exhibits a formant structure when φ = 0, 2π and a resonance shape when φ = 0.5π and 1.5π. Also, it changes more strongly under the spin-polarized coefficient than the non-polarized lead. Such a theoretical model can be modified to explore the spin-dependent effect in the hybrid Majorana quantum dot system.  相似文献   

5.
We report on nonadiabatic transport through a double quantum dot under irradiation of surface acoustic waves generated on chip. At low excitation powers, absorption and emission of single and multiple phonons are observed. At higher power, sequential phonon assisted tunneling processes excite the double dot in a highly nonequilibrium state. The present system is attractive for studying electron-phonon interaction with piezoelectric coupling.  相似文献   

6.
The problem of the time evolution of an electron wave packet in a symmetric double quantum dot under the action of a strong alternating electric field and a slowly varying bias voltage is solved theoretically under the conditions when the electron subsystem can transfer its energy to a single resonator mode. It is shown that the possibility of energy exchange between the electron subsystem and the resonator does not hamper the formation of stable electronic states localized in the left or right quantum dot (i.e., polarized states possessing a positive or negative dipole moment). An adiabatic change in the bias voltage may alter the direction of the dipole moment of the given state (which corresponds to an electron transition from one quantum dot to the other).  相似文献   

7.
We show that the coherence of charge transfer through a weakly coupled double-dot dimer can be determined by analyzing the statistics of the conductance pattern, and does not require a large phase coherence length in the host material. We present an experimental study of the charge transport through a small Si nanostructure, which contains two quantum dots. The transport through the dimer is shown to be coherent. At the same time, one of the dots is strongly coupled to the leads, and the overall transport is dominated by inelastic cotunneling processes.  相似文献   

8.
We demonstrate high-speed manipulation of a few-electron double quantum dot. In the one-electron regime, the double dot forms a charge qubit. Microwaves are used to drive transitions between the (1,0) and (0,1) charge states of the double dot. A local quantum point contact charge detector measures the photon-induced change in occupancy of the charge states. Charge detection is used to measure and also provides a lower bound estimate for of 400 ps for the charge qubit. In the two-electron regime we use pulsed-gate techniques to measure the singlet–triplet relaxation time for nearly-degenerate spin states. These experiments demonstrate that the hyperfine interaction leads to fast spin relaxation at low magnetic fields. Finally, we discuss how two-electron spin states can be used to form a logical spin qubit.  相似文献   

9.
Dynamics of two quantum dots coupled to electrodes with spin bias is investigated theoretically by means of the master equations. The two dots are coupled via exchange interaction. When the exchange interaction is much smaller than the lead-dot 2 coupling and dot 2 is under a symmetric spin bias, an initially fully polarized electron spin in dot 1 undergoes an oscillation with ignorable attenuation. Meanwhile, the direction of charge current flowing through dot 2 oscillates in the same period as that of the spin in dot 1. This allows to reverse or nearly noninvasively read out the spin in dot 1, by switching on and off the exchange interaction for a duration of half-integer or integer periods of the oscillation, respectively.  相似文献   

10.
Strong electron and spin correlations in a double quantum dot (DQD) can give rise to different quantum states. We observe a continuous transition from a Kondo state exhibiting a single-peak Kondo resonance to another exhibiting a double peak by increasing the interdot coupling (t) in a parallel-coupled DQD. The transition into the double-peak state provides evidence for spin entanglement between the excess electrons on each dot. Toward the transition, the peak splitting merges and becomes substantially smaller than t because of strong Coulomb effects. Our device tunability bodes well for future quantum computation applications.  相似文献   

11.
The two-electron wave function and charge distribution are obtained in a symmetric double quantum dot in a weak variable electric field. It is shown that the action of a variable field under resonance conditions when the perturbation frequency is close to the frequency of the quantum transition leads to the appearance of electron density oscillations between the dots having the characteristic form of beats. However, the Coulomb repulsion between the electrons strongly “quenches” the amplitude of the beats even in a resonant variable field.  相似文献   

12.
We measure the dephasing time of the exciton ground state transition in InGaAs quantum dots (QD) and quantum dot molecules (QDM) using a sensitive four-wave mixing technique. In the QDs we find experimental evidence that the dephasing time is given only by the radiative lifetime at low temperatures. We demonstrate the tunability of the radiatively limited dephasing time from 400 ps up to 2 ns in a series of annealed QDs with increasing energy separation of 69–330 meV from the wetting layer continuum. Furthermore, the distribution of the fine-structure splitting δ1 and of the biexciton binding energy δB is measured. δ1 decreases from 96 to with increasing annealing temperature, indicating an improving circular symmetry of the in-plane confinement potential. The biexciton binding energy shows only a weak dependence on the confinement energy, which we attribute to a compensation between decreasing confinement and decreasing separation of electron and hole. In the QDM we measured the exciton dephasing as function of interdot barrier thickness in the temperature range from 5 to 60 K. At 5 K dephasing times of several hundred picoseconds are found. Moreover, a systematic dependence of the dephasing dynamics on the barrier thickness is observed, showing how the quantum mechanical coupling in the molecules affects the exciton lifetime and acoustic-phonon interaction.  相似文献   

13.
赵华  张国锋  殷雯  梁九卿 《中国物理》2004,13(6):938-941
We have studied the dynamical behaviours of two electrons confined in a double quantum dot driven by rotating magnetic fields in terms of the theory of Lewis-Riesenfeld Hermitian invariants for the explicitly time-dependent Hamiltonian. The coherent spin oscillations in the dot provide a generation source for spin current. Exact solutions obtained allow us to investigate the dynamical properties of the spin localization for various initial localized states.  相似文献   

14.
徐婕  W.Z.Shangguan  詹士昌 《中国物理》2005,14(10):2093-2099
The effect of phase-breaking process on the ac response of a coupled double quantum dot is studied in this paper based on the nonequilibrium Green function formalism. A general expression is derived for the ac current in the presence of electron--phonon interaction. The ac conductance is numerically computed and the results are compared with those in [Anatram M P and Datta S 1995 Phys. Rev. B 51 7632]. Our results reveal that the inter-dot electron tunnelling interplays with that between dots and electron reservoirs, and contributes prominently to the ac current when inter-dot tunnelling coupling is much larger than the tunnelling coupling between dots and electron reservoirs. In addition, the phase-breaking process is found to have a significant effect on the ac transport through the coupled double dot.  相似文献   

15.
Within the weak-coupling regime the spin current through a quantum dot system is calculated using a quantum master equation approach which includes a sum over Matsubara terms. To be able to efficiently calculate, also at low temperatures, the time evolution of the reduced density matrix a high-temperature approximation was derived which proves to be rather accurate in comparison to the exact results. In the present model it is assumed that the energy levels of the dot are split by a constant magnetic field. An additional external (laser) field is used to control the currents of the two spin polarizations. This is either done using the phenomenon of coherent destruction of tunneling or optimal control theory. Scenarios are studied in which the spin current is reversed while the charge current is kept constant.  相似文献   

16.
解研  段素青  楚卫东  杨宁 《中国物理 B》2010,19(11):117304-117304
Based on a calculation model,we study the interference phenomena of serially coupled V-type and Λ-type triple quantum dots (CTQDs) driven simultaneously by a strong driving field and a weak probe field.Strongly depending on the configuration of the three-level CTQD,the probe absorption spectra,which are shown in the tunneling current,exhibit various quantum coherence properties.In the case where the two pairs of transitions of the CTQD have a small eigenfrequency difference △ω,the double-coupling effect of the driving field results in two Autler-Townes doublets and one weak Mollow triplet in one spectrum.With the value of △ω increasing,only one Autler-Townes splitting remains due to the single-coupling of the field.We also find that the effect of spontaneous emission of phonons may lead to an obvious background current,which can be used to distinguish which transition is driven by the driving field in experiment.The interesting quantum property of a CTQD revealed in our results suggests its potential applications in quantum modulators and quantum logic devices.  相似文献   

17.
We manipulate a single electron in a fully tunable double quantum dot using microwave excitation. Under resonant conditions, microwaves drive transitions between the (1,0) and (0,1) charge states of the double dot. Local quantum point contact charge detectors enable a direct measurement of the photon-induced change in occupancy of the charge states. From charge sensing measurements, we find T1 approximately 16 ns and a lower bound estimate for T*(2) of 400 ps for the charge two-level system.  相似文献   

18.
In a semiconductor quantum dot, the IIx and IIy transitions to the polarization eigenstates, |x> and |y>, naturally form a three-level V-type system. Using low-temperature polarized photoluminescence spectroscopy, we have investigated the exciton dynamics arising under strong laser excitation. We also explicitly solved the density matrix equations for comparison with the experimental data. The polarization of the exciting field controls the coupling between the otherwise orthogonal states. In particular, when the system is initialized into \Y>, a polarization-tailored pulse can swap the population into |x>, and vice versa, effectively operating on the exciton spin.  相似文献   

19.
We report measurements of the cross correlation between temporal current fluctuations in two capacitively coupled quantum dots in the Coulomb blockade regime. The sign of the cross-spectral density is found to be tunable by gate voltage and source-drain bias. We find good agreement with the data by including an interdot Coulomb interaction in a sequential-tunneling model.  相似文献   

20.
In this paper we demonstrate optical writing of information on the spin state of a single Mn ion embedded in a CdTe/ZnTe quantum dot. As a tool for Mn spin orientation we use a spin-conserving transfer of excitation between two coupled quantum dots, one of them containing the Mn ion. Excitons created by circularly polarized light act on the Mn ion via the sp–d exchange interaction and orient its spin. The magnetic field of 1 T strongly enhances the orientation efficiency due to suppression of fast Mn spin relaxation mechanisms. Dynamics of the Mn spin under polarized excitation was measured in a time-resolved experiment, in which the intensity and polarization of excitation were modulated. Observed dynamics of the Mn spin can be described with a simple rate equation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号