首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Garcia CD  Henry CS 《The Analyst》2004,129(7):579-584
Creatinine, creatine, and uric acid are three important compounds that are measured in a variety of clinical assays, most notably for renal function. Traditional clinical assays for these compounds have focused on the use of enzymes or chemical reactions. Electrophoretic microchips have the potential to integrate separation power of capillary electrophoresis with devices that are small, portable, and have the speed of conventional sensors. The development of a microchip CE system for the direct detection of creatinine, creatine, and uric acid is presented. The device uses pulsed amperometric detection (PAD) to detect the nitrogen-containing compounds as well as the easily oxidizable uric acid. Baseline separation of creatinine, creatine and uric acid was achieved using 30 mM borate buffer (pH = 9.4) in less than 200 s. Linear calibration curves were obtained with limits of detection of 80 microM, 250 microM and 270 microM for creatinine, creatine and uric acid respectively. An optimization of the separation conditions and a comparison of PAD with other amperometric detection modes is also shown. Finally, analysis of a real urine sample is presented with validation of creatinine concentrations using a clinical assay kit based on the Jaffé reaction.  相似文献   

2.
Indirect LIF detection was applied to the detection of four acidic diuretics separated by CZE. Semiconductor laser was employed to provide the stable excitation of 473 nm. With an optimized electrophoretic buffer system which contained 5 mM of triethylamine, 0.1 microM of fluorescein, and 5% of n-butanol, fast separation of four diuretics (ethacrynic acid, chlorthalidone, bendroflumethiazide, and bumetanide) can be performed within 3 min with the detection limits of 0.2-2 microg/mL. The impacts of buffer components including the concentrations of the electrolytes, fluorescence probe, and the organic additives were demonstrated. The method was applied for the detection of diuretics in urine. As an alternative way for the fast analysis of diuretics, this indirect detection method provided the technical support for future microchip performances, in which diuretics may be detected in the microchip by the common LIF detector without derivatization.  相似文献   

3.
This paper reports, for the first, the fast and simultaneous detection of prominent heavy metals, including: lead, cadmium and copper using microchip CE with electrochemical detection. The direct amperometric detection mode for microchip CE was successfully applied to these heavy metal ions. The influences of separation voltage, detection potential, as well as the concentration and pH value of the running buffer on the response of the detector were carefully assayed and optimized. The results clearly show that reliable analysis for lead, cadmium, and copper by the degree of electrophoretic separation occurs in less than 3min using a MES buffer (pH 7.0, 25mM) and l-histidine, with 1.2kV separation voltage and -0.8V detection potential. The detection limits for Pb(2+), Cd(2+), and Cu(2+) were 1.74, 0.73 and 0.13microM (S/N=3). The %R.S.D. of each peak current was <6% and migration times <2% for prolonged operation. To demonstrate the potential and future role of microchip CE, analytical possibilities and a new route in the raw sample analysis were presented. The results obtained allow the proposed microchip CE-ED acts as an alternative approach for metal analysis in foods.  相似文献   

4.
A microchip capillary-electrophoresis protocol for rapid and effective measurements of food-related phenolic acids (including chlorogenic, gentisic, ferulic, and vanillic acids) is described. Relevant parameters of the chip separation and amperometric detection are examined and optimized. Under optimum conditions, the analytes could be separated and detected in a 15 mM borate buffer (pH 9.5, with 10% of methanol) within 300 s using a separation voltage of 2000 V and a detection voltage of +1.0 V. Linear calibration plots are observed for micromolar concentrations of the phenolic acid compounds. The negligible sample volumes used in the microchip procedure obviates surface fouling common to amperometric measurements of phenolic compounds. The new microchip protocol offers great promise for a wide range of food applications requiring fast measurements and negligible sample consumption. An application on a commercial red wine was performed with minimal sample preparation and promising results.  相似文献   

5.
Fanguy JC  Henry CS 《The Analyst》2002,127(8):1021-1023
The first report of pulsed amperometric detection (PAD) on an electrophoretic microchip is presented. A hybrid poly-(dimethylsiloxane)/glass device was coupled with a platinum working electrode for the electrochemical detection of glucose, maltose, and xylose. Under optimized detection conditions, glucose was found to respond linearly from 20 to 500 microM with a measured detection limit of 20 microM. The coupling of PAD with a microchip provides a straightforward approach to the analysis of a wide range of carbohydrates using microfluidics.  相似文献   

6.
Chen G  Bao H  Yang P 《Electrophoresis》2005,26(24):4632-4640
A microchip CE-amperometric detection (AD) system has been fabricated by integrating a two-dimensionally adjustable CE microchip and an AD cell containing a one-dimensionally adjustable disk detection electrode in a Plexiglas holder. It facilitates the precise 3-D alignment between the channel outlet and the detection electrode without a complicated 3-D manipulator. The performance of this unique system was demonstrated by separating five aromatic amines (1,4-phenyldiamine, aniline, 2-methylaniline, 4-chloroaniline, and 1-naphthylamine) of environmental concern. Factors influencing their separation and detection processes were examined and optimized. The five analytes have been well separated within 140 s in a 74 cm long separation channel at a separation voltage of +2500 V using a 10 mM phosphate buffer (pH 3.5). Highly linear response is obtained for the five analytes over the range 20-200 microM with the detection limits ranging from 0.46 to 1.44 microM, respectively. The present system demonstrated long-term stability and reproducibility with RSDs of less than 5% for the peak current (n = 9). The new approach for the microchannel-electrode alignment should find a wide range of applications in CE, flowing injection analysis, and other microfluidic analysis systems.  相似文献   

7.
CE with capacitively coupled contactless detection (C4D) was used to determine 3-methylhistidine (3-MH) and 1-methylhistidine (1-MH). The C4D response to 3-MH was studied in a BGE consisting of 500 mM acetic acid and ammonia at varying concentration and the results were compared with the theory. Complete separation of a model mixture of 3-MH, 1-MH, and histidine (His) was attained in two optimized BGEs, one containing 500 mM HAc, 20 mM NH4OH, and 0.1 % m/v hydroxyethylcellulose (HEC), pH 3.4 (I) and the other consisting of 100 mM morpholinoethanesulfonic acid (MES), 25 mM LiOH, and 0.1 % m/v HEC, pH 5.5 (II). These optimized BGEs were tested in CE/C4D analyses of urine. Promising results were obtained for separation and determination of 3-MH, 1-MH, and His on a silicon microchip, using aluminum strips as the C4D electrodes; the three analytes were baseline-separated within less than 30 s with a separation channel effective length of 38 mm. The LOD were satisfactory and amounted to 26.4 microM for 3-MH and 18.3 microM for 1-MH.  相似文献   

8.
Two methods are presented for the quantitative capillary electrophoretic (CE) determination of phenolic lignin degradation compounds as well as of inorganic anions and organic acids in Kraft black liquors. Important phenolic lignin degradation compounds can be rapidly separated by co-electroosmotic CE after acidification of the liquors and subsequent extraction of the compounds with chloroform. A capillary electrophoretic separation of phenolic compounds is performed by using a phosphate/borate electrolyte system and UV detection at 214 nm. In addition, a HPLC method using a gradient with water, methanol, and acetic acid is also developed. Inorganic ions which are of importance to the pulping process can be determined by simply diluting the black liquors after sampling and subsequent analysis with a chromate electrolyte system and indirect UV detection at 185 nm. In addition, the concentration of low molecular aliphatic carboxylic acids can be determined simultaneously within the same run. By method optimization it is possible to separate the anions within one minute and, at the same time, to increase the resolution of the solutes. The electrolyte systems for the CE separations were optimized by varying the pH value and by adding organic solvents. Short separation times are obtained by adding a polycationic EOF modifier (hexadimethrine bromide) to the electrolyte which reverses the electroosmotic flow. A migration of the anionic analytes in the same direction as the electroosmotic flow is thus established.  相似文献   

9.
The applicability of capillary electrophoresis (CE) in combination with atmospheric pressure ionization mass spectrometry (API-MS) is demonstrated for the determination of organic acids and in particular for haloacetic acids. CE-conditions, sheath flow and MS-parameters were optimized with respect to the separation of the analytes and mass spectrometric sensitivity. CE/MS turned out to be an attractive alternative for the determination of haloacetic acids to existing methods based on GC-ECD. Employing CE/MS derivatization is not necessary which saves time and avoids possible sources of errors. In the present work the sample pre-treatment is performed by liquid-liquid extraction using methyl tert.-butyl ether as the extraction solvent. The organic phase is brought to dryness in a stream of nitrogen gas and the residue is dissolved in methanol and analyzed by CE/MS using a mixture of 2-propanol/water 80?:?20 containing triethylamine as the sheath liquid in the interface. Best results for the separation of all nine possible bromo- and chloroacetic acids together with two internal standards are obtained with a carrier electrolyte consisting of ammonium acetate/acetic acid in methanol; to resolve the strongly acidic trihaloacetic acids as well as the less acidic monohaloacetic acids, a careful optimization of the acetic acid content is necessary. The method was applied to the determination of haloacetic acids in real water samples. With optimized CE and MS conditions detection limits between 0.3 and 7.6 μg/L in the original water samples were achieved, employing a sample volume of 30 mL.  相似文献   

10.
The applicability of capillary electrophoresis (CE) in combination with atmospheric pressure ionization mass spectrometry (API-MS) is demonstrated for the determination of organic acids and in particular for haloacetic acids. CE-conditions, sheath flow and MS-parameters were optimized with respect to the separation of the analytes and mass spectrometric sensitivity. CE/MS turned out to be an attractive alternative for the determination of haloacetic acids to existing methods based on GC-ECD. Employing CE/MS derivatization is not necessary which saves time and avoids possible sources of errors. In the present work the sample pre-treatment is performed by liquid-liquid extraction using methyl tert.-butyl ether as the extraction solvent. The organic phase is brought to dryness in a stream of nitrogen gas and the residue is dissolved in methanol and analyzed by CE/MS using a mixture of 2-propanol/water 80 : 20 containing triethylamine as the sheath liquid in the interface. Best results for the separation of all nine possible bromo- and chloroacetic acids together with two internal standards are obtained with a carrier electrolyte consisting of ammonium acetate/acetic acid in methanol; to resolve the strongly acidic trihaloacetic acids as well as the less acidic monohaloacetic acids, a careful optimization of the acetic acid content is necessary. The method was applied to the determination of haloacetic acids in real water samples. With optimized CE and MS conditions detection limits between 0.3 and 7.6 μg/L in the original water samples were achieved, employing a sample volume of 30 mL. Received: 4 May 1999 / Revised: 9 June 1999 / Accepted: 12 June 1999  相似文献   

11.
The analysis is described for separating seven beta-adrenergic blocking agents (atenolol, celiprolol, clorprenaline, fenoterol, metoprolol, propranolol, terbutaline) and clenbuterol (sympathomimetic beta-2 receptor stimulating agonist, decongestant and bronchodilator, illicit anabolic used in athletics) by CE with UV detection. In order to simultaneously separate all analytes, Tris-H3PO4 solution was applied containing titanium dioxide nanoparticles (TiO2 NPs) as BGEs. The effects of important factors, such as concentration of TiO2 NPs, optimum pH, run buffer concentration, and separation voltage, were investigated so as to achieve best CE separation. The eight analytes could be well separated applying a separation voltage of 15 kV in 75 mM Tris-H3PO4 buffer at a pH of 2.40, containing 6.0 x 10(-6) g/mL TiO2 NPs. Under these optimal conditions, the RSDs for peak areas and for migration times were less than 2.7 and 2.3%, respectively. The detection limits were 0.1 microg/mL for celiprolol, 0.1 microg/mL for propranolol, 0.2 microg/mL for fenoterol, 1.0 microg/mL for atenolol, 1.0 microg/mL for clenbuterol, 1.0 microg/mL for clorprenaline, 1.0 microg/mL for metoprolol, and 1.0 microg/mL for terbutaline. The proposed method was successfully applied for the rapid CE determination of the frequently applied antihypertensive beta-blocking compounds atenolol, metoprolol, terbutaline, and propranolol in pharmaceutical tablets.  相似文献   

12.
Kriikku P  Grass B  Hokkanen A  Stuns I  Sirén H 《Electrophoresis》2004,25(10-11):1687-1694
Analysis of the beta-blockers oxprenolol, atenolol, timolol, propranolol, metoprolol, and acebutolol in human urine by a combination of isotachophoresis (ITP) and zone electrophoresis (ZE) was investigated. Methods were developed with a conventional capillary electrophoresis (CE) apparatus and a poly(methyl methacrylate) (PMMA) microchip system. With CE the separation of oxprenolol, atenolol, timolol, and acebutolol from a standard solution containing 5 microg/mL of each compound was accomplished by performing ZE with transient ITP. The electrolyte system consisted of 10 mM sodium morpholinoethane sulfonate (pH 5.5) and 0.1% methylhydroxyethylcellulose as the leading electrolyte and 30 mM ortho-phosphoric acid (pH 2.0) as both the terminating and the ZE background electrolyte. With the microchip system the separation of oxprenolol and acebutolol from a standard solution containing 10 microg/mL of each compound was accomplished by a coupled-channel ITP-ZE device using the same leading electrolyte solution as the CE system but 5 mM glutamic acid (pH 3.4) as terminating and background electrolytes. The systems were used for analyses of patient urine samples. Water-soluble hydrophilic matrix compounds were removed from the urine samples by solid-phase extraction (SPE). Limits of quantification below 5 microg/mL could be achieved. The PMMA ITP-ZE chip has not earlier been used for analyses of any drugs from urine samples.  相似文献   

13.
The first carbon-based dual-electrode detector for microchip capillary electrophoresis (CE) is described. The poly(dimethylsiloxane) (PDMS)-based microchip CE devices were constructed by reversibly sealing a PDMS layer containing separation and injection channels to another PDMS layer containing carbon fiber working electrodes. End-channel amperometric detection was employed and the performance of the chip was evaluated using catechol. The response was found to be linear between 1 and 600 microM with an experimentally determined limit of detection (LOD) of 500 nM and a sensitivity of 30 pA/microM. Collection efficiencies for catechol ranged from 36.0 to 43.7% at field strengths of 260-615 V/cm. The selectivity that can be gained with these devices is demonstrated by the first CE-based dual-electrode detection of a Cu(II) peptide complex. These devices illustrate the potential for a rugged and easily constructed microchip CE system with an integrated carbon-based detector of similar scale.  相似文献   

14.
Ma B  Zhou X  Wang G  Huang H  Dai Z  Qin J  Lin B 《Electrophoresis》2006,27(24):4904-4909
A quartz microchip integrated isotachophoretic (ITP) preconcentration with zone electrophoresis (ZE) separation was fabricated using a novel multi-point pressure method featured in normal temperature and lower pressure during bonding process. ITP followed by subsequential ZE of two flavonoids, quercetin and isorhamnetin on the microchip was performed consecutively on the homemade microfluidic workstation with UV detection, resulting in a decreased detectable concentration of 32-fold, compared to the ZE mode only, and their detection limits decreased down to 0.2 microg/mL and 1.2 microg/mL, respectively.  相似文献   

15.
Revermann T  Götz S  Karst U 《Electrophoresis》2007,28(7):1154-1160
A microchip CE-based method for the quantification of the thiols mercaptoethanoic acid (MAA) and 2-mercaptopropionic acid (2-MPA) in depilatory cream and cold wave lotions was developed. The thiols were first derivatized with the fluorogenic reagent ammonium-7-fluorobenzo-2-oxa-1,3-diazole-4-sulfonate (SBD-F). The derivatives were separated within only 20 s by microchip CE and detected by their fluorescence. Conventional CE with diode array detection and LC with fluorescence detection were used for validation. The internal standard 3-mercaptopropionic acid (3-MPA) provided RSDs of multiple injections of only 4% or less for the MCE approach. LOD is 2 microM, LOQ 6 microM, and the linear range comprises nearly three decades of concentration starting at the LOQ.  相似文献   

16.
A method to integrate a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis (CE) is detailed. As opposed to previous studies with decouplers for microchip CE, the working electrode material, which is made by micromolding of a carbon ink, is different from the decoupling electrode material (palladium). The manner in which the working electrode is made does not add additional etching or lithographic steps to the fabrication of the glass electrode plate. The hybrid poly(dimethylsiloxane)/glass device was characterized with fluorescence microscopy and by monitoring the CE-based separation of dopamine. Hydrodynamic voltammograms exhibited diffusion-limited currents occurring at potentials above +1.0 V. It was also shown that the half-wave potential does not shift as the separation potential is changed, as is the case in nondecoupled systems. Gated injections of dopamine in a 25 mM boric acid buffer (pH 9.2) showed a linear response from 200 to 5 microM (r2 = 0.9992), with a sensitivity of 5.47 pA/microM and an estimated limit of detection of 2.3 microM (0.621 fmol, S/N = 3). This is the first report of coupling a carbon electrode with a decoupler in microchip CE.  相似文献   

17.
Ding Y  Garcia CD 《The Analyst》2006,131(2):208-214
A miniaturized analytical system for separation and detection of three EPA priority phenolic pollutants, based on a poly(dimethylsiloxane)-fabricated capillary electrophoresis microchip and pulsed amperometric detection is described. The approach offers a rapid (less than 2 min), simultaneous measurement of three phenolic pollutants: phenol, 4,6-dinitro-o-cresol and pentachlorophenol. The highly stable response (RSD = 6.1%) observed for repetitive injections (n > 100) reflects the effectiveness of Au working electrode cleaned by pulsed amperometric detection. The effect of solution conditions, separation potential and detection waveform were optimized for both the separation and detection of phenols. Under the optimum conditions (5.0 mM phosphate buffer pH = 12.4, detection potential: 0.7 V, separation potential: 1200 V, injection time: 10 s) the baseline separation of the three selected compounds was achieved. Limits of detection of 2.2 microM (2.8 fmol), 0.9 microM (1.1 fmol), and 1.3 microM (1.6 fmol) were achieved for phenol, 4,6-dinitro-o-cresol and pentachlorophenol, respectively. A local city water sample and two over-the-counter sore-throat medicines were analyzed in order to demonstrate the capabilities of the proposed technique to face real applications.  相似文献   

18.
A novel electrophoretic BGE containing tungstate as complex-forming reagent is suitable for the separation of polyphenols. Similar to molybdate-containing BGE reported earlier (cf. M. Polásek, et al.., Talanta 2006, 69, 192) addition of tungstate to BGE affects significantly migration of compounds/ligands with vicinal -OH groups due to the formation of negatively charged complexes involving W(VI) as central ion. Baseline separation of mixtures of flavonoids (apigenin, luteolin, hyperoside, quercetin, and rutin) and phenolic acids (chlorogenic and p-coumaric acid) was achieved within 15 min with optimized BGE of pH 7.4 containing 50 mM N-(2-hydroxyethyl)piperazine-2'-(2-ethanesulfonic acid) (HEPES), 2.2 mM tungstate, and 25% v/v of methanol. The separation was performed in a 75 cm (effective length 42 cm)x 75 microm id uncoated fused-silica capillary at 30 kV with spectrophotometric detection at 275 nm. The calibration curves were rectilinear for 25-175 microg/mL of all analytes (cinnamic acid as the internal standard). The LODs ranged from 1.8 to 6 microg/mL for all analytes except for chlorogenic acid. Intraday precision (n = 6) of migration times (RSD < or = 1.2%) and peak areas (RSD < or = 5.6%) was evaluated. The tungstate-based BGEs can be alternatively utilized for the analysis of polyphenols at considerably lower pH than with conventional alkaline borate-based BGEs.  相似文献   

19.
天然酚酸类化合物的反相高效液相分析   总被引:12,自引:0,他引:12  
刘江云  杨学东  徐丽珍  杨世林 《色谱》2002,20(3):245-248
 采用反相高效液相法梯度洗脱 ,对 12种天然酚酸进行定性定量分析研究。通过条件的优化 ,确定了最佳的分离条件 ;同时探讨了流动相的酸度对分离结果的影响 ,以及酚酸结构与保留行为之间的关系。实验中以确定的最佳分离条件对 12种天然酚酸进行了定量分析 ,测定了各个化合物的回归方程、相关系数、线性范围、检测限和相对标准偏差。实验结果显示 ,各个化合物回归方程的相关系数r为 0 9980~ 0 9999,检测限为 0 96ng~ 4 10ng ,相对标准偏差RSD≤ 2 6 4 % ,满足定量分析要求。  相似文献   

20.
A method was developed to analyze phenolic acids by nonaqueous CE after online concentration with electrokinetic supercharging. The EOF was reversed using a polyelectrolyte multilayer approach based on the successive adsorption of poly(diallyldimethylamonium chloride) and poly(styrenesulfonate) to reduce the analysis time. The results showed that the coatings were stable during 40 consecutive injections. Four phenolic acids were separated within 8 min using 30 mM ammonium acetate (pH* 8.0). The electrokinetic injection time and terminator length of the electrokinetic supercharging method were optimized to improve the detection sensitivity. Under the optimized conditions (electrokinetic injection of 100 s, ?10 kV; terminator of 20 mM 2‐(cyclohexylamino) ethanesulfonic acid, 22 s, 0.5 psi), the sensitivity was enhanced from 300‐ to 440‐fold. The detection limits, based on three times noise, were in the range 1.0–2.5 ng/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号