首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-oxo-4-phenylbutanehydrazide 3 was reacted with aryl or alkyl isothiocyanates to give the corresponding N-substituted-2-(4-oxo-4-phenylbutanoyl) hydrazine-1-carbothioamide 4a-c . Cyclization of thiosemicarbazides 4a-c with sodium hydroxide led to the formation of 3-(4-sub-5-thioxo-1,2,4-triazol-3-yl)-propanone 5a-c . Desulfurization of thiosemicarbazides 4a-c by mercuric oxide afforded 3-(5-(sub-amino)-1,3,4-oxadiazol-2-yl)-propanone 6a-c . The reaction of 4a-c with phosphorus oxychloride gave 3-(5-(sub-amino)-1,3,4-thiadiazol-2-yl)-propanone 7a-c . Treatment of 4a-c with ethyl-bromoacetate or α-bromopropionic acid gave N′-(3-sub-thiazolidin-2-ylidene)-butanehydrazide 8a-c and (N′-(3-sub-oxothiazolidin-2-ylidene)-butanehydrazide 9a-c . Chlorination of oxothiazolidine-hydrazide 9a-c by phosphorus oxychloride afforded N-(3-sub-4-oxothiazolidine)-butane-hydrazonoyl-chloride 10a-c . The reaction of 10a-c with mercaptoacetyl-chloride yielded 2-((4-benzoyl-thiopyrane) hydrazono)-3-sub-thiazolidinone 11a-c . Also, reacted of 10a-c with hydrazine hydrate afforded N″-(3-sub-oxothiazolidine)-butane-hydrazon-hydrazide 12a-c . The 3-sub-2-((pyridazine) hydrazono) thiazolidinone 13a-c was obtained by cyclization of 12a-c via refluxing in DMF. The reaction and cyclized of 9a-c with chloroacetyl-chloride in ethanolic KOH afforded 1-((3-sub-4-oxothiazolidine) amino)-azepine-dione 14a-c . The chemical structures of the new compounds have been confirmed by diverse spectroscopy analyses such as IR, NMR, MS, and elemental analysis. The synthesized compounds were tested for their antimicrobial activity and these compounds were considered (Pyridazin-hydrazono-thiazolidinone 13a-c , oxothiazolidin-azepinedione 14a-c , N-thiazolidin-hydrazon-hydrazide 12a-c , and thiopyran-hydrazono-thiazolidinone 11a-c ) the most effective as antimicrobial activity.  相似文献   

2.
The reactions of 3-methoxycarbonylmethylene-2-oxo-1,2,3,4-tetrahydroquinoxaline 1 with aryl diazonium salts gave 3-(α-aryldiazenylmethoxycarbonylmethylene)-2-oxo-1,2,3,4-tetrahydroquinoxalines 2a-c , whose reactions with hydrazine hydrate afforded 3-(α-aryldiazenylhydrazinocarbonylmethylene)-2-oxo-1,2,3,4-tetrahydroquinoxalines 3a-c . The reactions of 3a-c with nitrous acid resulted in the Curtius rearrangement to provide the 1-aryl-3-quinoxalinyl-1,2,4-triazol-5-ones 4a-c.  相似文献   

3.
Reaction of 2-(3-,4-)pyridinecarboxaldehydes 5 with carbomethoxymethylene triphenylphosphorane afforded predominantly E-methyl-3-(pyridinyl)-2-propenoates 7. Oxidation of 7a-c with m-chloroperbenzoic acid gave methyl E-3-(1-oxidopyridinyl)-2-propenoates 8a-c in high yield. The Darzen's reaction of 5a-c with methyl bromoacetate yielded a mixture of stereoisomers cis- 9a-c and methyl trans-3-(pyridinyl)-2,3-epoxy-propanoates 10a-c in a ratio of 2:1. Oxidation of cis- 9a-c and trans- 10a-c afforded the corresponding cis- 11a-c and methyl trans-3-(1-oxidopyridinyl)-2,3-epoxypropanoates 12a-c in good yield. The reaction of 11a and 12a with cyclic amines as piperidine gave the respective threo- 13 and methyl erythro-2-(1-piperidino)-3-hydroxy-3-(1-oxido-2-pyridino)propanoate 14. The sodium borohydride reduction of the N-alkoxylcarbonyl pyridinium salts of 9c and 10c afforded the corresponding N-alkoxycarbonyl-1,2-dihydropyridyl derivatives 15 and 16. A number of selected compounds ( 7a-c , 9a-c , 10a , 10c , 11a-c and 12a , 12c ) were found to be inactive in the P388 Lymphocytic screen. Compounds 9-12 did not react with the model nucleophile ethanethiol in phosphate buffer at 37°.  相似文献   

4.
2-(Benzotriazol-1-yl)-2H-azirines 4a-c, obtained by treatment of oximes 2a-c with tosyl chloride and aqueous KOH, were reacted with benzylmagnesium bromide or 4-methylbenzylmagnesium bromide in the presence of zinc chloride to give 2-benzyl-2H-azirines 5a-f. Potassium phthalimide and sodium salt of benzenethiol converted 2-(benzotriazol-1-yl)-2H-azirines 4a-c into novel 2H-azirines 6a-c and 7 in good yields.  相似文献   

5.
N-Monoacyl-2,6-diaminopyridines (2a-c) and N,N'-diacyl-2,6-diaminopyridines (3a-c) were synthesized from 2,6-diaminopyridine by acylation with the corresponding acyl halide or by dehydration with the corresponding carboxylic acid using 1,3-dicyclohexylcarbodiimide (DCC). The antiviral activities of N-monoacyl- and N,N'-diacyl-2,6-diaminopyridines (2a-c and 3a-c) were estimated using plaque reduction assay with HSV-1. All N-monoacyl derivatives (2a-c) showed significant anti-herpes simplex virus (HSV)-1 activity (EC(50) = 15.3-18.5 microg/ml). The CC(50) values of 2a-c measured using Vero cells ranged at 37.5-50.0 microg/ml. These compounds showed no significant antibacterial activities with Escherichia coli or Staphylococcus aureus even at a concentration of 1 mg/ml. The N,N'-diacyl derivatives (3a-c) showed no significant anti-HSV-1 activity.  相似文献   

6.
A new synthesis of 2-methyl-9-R'-10-R-5,6-dihydro-7H-pyrazolo[1,5-d][1,4]benzodiazepin-6-ones ( 4a-c ) is deserved. Reaction of ethyl hydrazinoacetate hydrochloride with 1,3-diketones 1a-c gave both 3-methyl-5-(4R'-5-R-2-nitrophenyl)pyrazol-1-yl-acetate acids ( 2a-c ) and the corresponding ethyl esters 3a-c . Reduction with the appropiate reducing agent of compounds 2a-c and 3a-c directly gave the title compounds. Compound 4a showed insecticidal properties against the house fly.  相似文献   

7.
A variety of novel 5-[( Z )-arylidene]-2-[(2-( E )-arylidene)hydrazono]-4-imidazolidinones 1a-c to 4a , b and 5-[( Z )-arylidene]-2-[(2-( E )-polyhydroxyalkylidene)hydrazono]-4-imidazolidinones 5a-c to 7a-c were prepared from the reaction of 5-[( Z )-arylidene]-2-methylmercaptohydantoins 8a-c with 2-( E )-arylidene hydrazones 13a-d and/or 2-( E )-monosaccharides hydrazones 16a-c . The linear structure, and not that of the angular isomer, has been selected for the products. This structure has been confirmed from a model study of the condensation of 5-[( Z )-2-thienylidene]-2-hydrazono-4-imidazolidinone 9a with benzaldehyde and D -galactose, respectively. The acetylation and benzoylation reactions of compounds 1-7 have been studied. All the new compounds were tested for their potential antiviral and antitumor activities.  相似文献   

8.
Catalytic reaction of 2 H -azaphosphirene complex 1 with ortho -, meta -, and para -benzodinitrile ( 2a-c ) led in all cases to the 2 H -1,4,2-diazaphosphole complexes 3a-c if ferrocenium hexafluorophosphate was used as catalyst. In the case of the meta - and para -benzodinitriles 2b-c , the bis-2 H -1,4,2-diazaphosphole complexes 4b-c were additionally obtained. Under the same reaction conditions, acetone, diethylketone and cyclohexanone ( 5a-c ) reacted with complex 1 to yield j 3 -1,3,2-oxazaphospholene complexes 6a-c in good yields.  相似文献   

9.
3-Aryl-1,2,4-triazin-5(2H)-ones 1a-c react with indoles 2a-c in trifluoroacetic acid/chloroform or in boiling butanol or acetic acid to give 3-aryl-6-(indolyl-3)-1,6-dihydro-1,2,4-triazin-5(2H)-ones 3a-g . Oxidation of the dihydro-1,2,4-triazin-5(2H)-ones 3a-e afforded 6-(indolyl-3)-1,2,4-triazin-5(2H)-ones 4a-e , products of nucleophilic substitution of hydrogen in 1a-c . Refluxing 1b with N-methylpyrrote 5b in butanol for an extended time resulted in the formation of 3-(4-chlorophenyl)-6-(1-meuiylpyrrolyl-2)-1,2,4-triazin-5(2H)-one 4h. The reaction of 1a-c with indoles 2a-c , pyrroles 5a,b , 1,3-dimethyl-2-phenylpyrazol-4-one (8) and aminothiazoles 9a,b in acetic anhydride affords the 1-acetyl-3-aryl-6-hetaryl-1,6-dihydro-1,2,4-triazin-5(2H)-ones 6a-s . Reaction of 1a-c with N-methyl-pyrrole 5b in acetic anhydride gives beside the 1:1 addition products 6h-k also the 2:1 addition products 7a-c .  相似文献   

10.
Triethylamine catalyzes the reaction of 2-hydroxybenzonitrile ( 1 ) with aryl isocyanates to form the corresponding carbamates 2a-c , as well as the cyclization of the latter compounds to either 4[N-(N-arylcarbamoyl)-imino]-3-aryl-2H-1,3-benzoxazin-2-ones 4a-c , or 4-arylamino-2H-1,3-benzoxazin-2-ones 7a-c , depending on the reaction temperature. Under analogous conditions, the carbamates obtained from 1 and 2-chloroethyl isocyanate, 3-chloropropyl isocyanate and ethyl isocyanatoacetate undergo a double cyclization yielding imidazo- and pyrimido[1,2-c|1,3]benzoxazinones 13a,b,17 . Upon heating in phenyl ether, compounds 7a-c , rearrange to 2-(2-hydroxyphenyl)-4(3H)-quinazolinones 10a-c .  相似文献   

11.
2-Aryl-4-methoxy-9-oxocyclohepta[b]pyrylium perchlorates 1a-c reacted with hydroxylamine hydrochloride and hydrazine sulfate in the presence of triethylamine to afford 2-aryl-4,9-dihydrocyclohepta[b]pyran-4,9-dione 4-oximes 3a-c and 4-hydrazones 4a-c in good yields, respectively. On the other hand, the reactions with methylhydrazine and phenylhydrazine gave respectively 1-methyl- and 1-phenyl-substituted 5-aryl-3-(3-tropolonyl)pyrazoles 5a-c and 6a-c in excellent yields. Treatment with 4-nitrophenylhydrazine gave 2-aryl-4,9-dihydrocyclohepta[b]pyran-4,9-dione 4-(4-nitrophenyl)hydrazones 7a-c in good yields.  相似文献   

12.
Reactions of 4,4'-bipyridine (1) with excess of polyfluoroalkyl iodides (2a-d) at 100-110 degrees C, under neat conditions, led to the formation of monoquaternary salts (3a-d) in > 90% yields. Salts 3a-d were metathesized with LiN(SO2CF3)2 either in water or water/acetone mixtures to form ionic liquids (4a-d), respectively, in > 88% yields. When 1 was reacted with 2.5 equivalent of 2a-c in DMF at 110 degrees C, the diquaternary salts 5a-c were formed in > 85% yields. Alternatively, 5a-c were also synthesized by heating a mixture of 3a-c and 2a-c (1.25 equivalent) in DMF. The metathesis reaction of 5a-c with LiN(SO2CF3)2 produced dicationic ionic liquids (6a-c) in > 86% yield.  相似文献   

13.
3-Amino-3-thioxopropanamide (1) reacted with ethyl acetoacetate to form 6-hydroxy-4-methyl-2-thioxo-2,3-dihydropyridine-3-carboxamide (2), which reacted with α-haloketones 3 to produce 2,3-disubstituted-8-hydroxy-6-methyl-2H,5H-pyrido[3,2-f]-[1,4]thiazepin-5-ones 4a-c. Benzoylation of 4c led to the formation of the dibenzoate derivative 9. Compounds 4a-c could be prepared stepwise through the formation of S-alkylated derivatives 10a-c. Compounds 2, 4a-c, 9 and 10a-c were prepared using microwave as a source of heat, and gave better yields in shorter times than those achieved by traditional methods. Coupling of 4a-c with arenediazonium chlorides proceeded unusually to give the 6-hydroxy-4-methyl-2-(arylazo)thieno[2,3-b]pyridin-3(2H)-one ring contraction products 14. Structures of the newly synthesized compounds were proven by spectral and chemical methods.  相似文献   

14.
Reactions of N,N;-disubstituted hydrazinecarbothioamides 8a-c and substituted thioureidoethylthioureas 9a-c with 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil, 10a) and 2,3,5,6-tetrabromo-1,4-benzoquinone (bromanil, 10b) to form N,N;-disubstituted [1,3,4]thiadiazole-2,5-diamines 11a-c, 6,7-dichloro-3-substituted amino-1H-benzo[1,3,4]- thiadiazine-5,8-diones 12a-c, 2,3,7,8-tetrahalothianthrene-1,4,6,9-tetraones 13a,b, 5,6,8- trihalo-7-oxo-3,7-dihydro-2H-quinoxaline-1-carbothioic acid substituted amides 14a-c, 15a-c and 7-substituted imino-[1,3,6]thiadiazepane-3-thiones 16a-c are reported. Rationales for the observed conversions are presented.  相似文献   

15.
Conversion of isatoic anhydride to o-amino-N(1,1-disubstituted-propynyl)benzamides 3a-c followed by reflux in ethanolic potassium hydroxide gave 2-(o-aminophenyl)-4,4-disubstituted-5-methylene-4H-oxazoles 4a-c . The treatment of same 3a-c with triphosgene in pyridine with subsequent reflux gave 4a-c and 2-methylene-3,3-disubstituted-oxazolo[2,3-b]quinazolin-5(3H)-ones 5a-c.  相似文献   

16.
Preparation and varied thermal and photolytic reactions of 2-diazo-5,6-(disubstituted)acenaphthenones (11a-d) and 2-diazo-3,8-dimethoxyacenaphthenone (12) are reported. Alcohols react thermally and photolytically with 11a-c with losses of N(2) to yield 2-alkoxynaphthenones (24a,band 47a,b) and acenaphthenones (25 and 48a,b). Aniline and diphenylamine are converted by 11a-c at 180 degrees C to acenaph[1,2-b]indoles (29a,b and 53a,b). Thermolyses of 11a-c at approximately 450 degrees C (0.15 mmHg) yield reduction products 25 and 48a,b, respectively. Wolff rearrangements to 1,8-naphthyleneketenes (15a-d) and/or their derivatives are not observed in the above experiments. Oxygen converts 11a-c thermally to acenaphthenequinones (19a-c) and/or 1,8-naphthalic anhydrides. Insertion, addition, substitution, and/or isomerization reactions occur upon irradiation of 2-diazoacenaphthenones in cyclohexane, benzene, and tetrahydrofuran. Photolysis of 11d in benzene in the presence of O(2) yields the insertion-oxidation product 2-hydroxy-5,6-dinitro-2-phenylacenaphthenone (60). Photolyses of 11a-c in nitriles result in N(2) evolution and dipolar cycloaddition to give acenaph[1,2-d]oxazoles (41 and 61a,b). Acetylenes undergo thermal and photolytic cycloaddition/1,5-sigmatropic rearrangement reactions with 11a-d with N(2) retention to give pyrazolo[5,1-a]quinolin-7-ones (69f-j). 2-Diazoacenaphthenones 1a and 11a react thermally and photolytically with electronegatively-substituted olefins with N(2) expulsion to yield (E)- and (Z)-2-oxospiro[acenaphthylene-1(2H),1'cyclopropanes] 73a-c and 74a-c, respectively. The mechanisms of the reactions of 1a, 11a-d, and 12 reported are discussed.  相似文献   

17.
Intermolecular Diels-Alder reactions of masked o-benzoquinones, i.e., 6,6-dimethoxy-2,4-cyclohexadienones 5-7 and 21-24 generated from 2-methoxyphenols 1-3 and 17-20, respectively, with electron-deficient dienophiles leading to highly functionalized bicyclo[2.2.2]octenones are described. The masked o-benzoquinones (MOBs) 5-7 underwent Diels-Alder cycloadditions with methyl acrylate, methyl methacrylate, and methyl vinyl ketone to provide bicyclo[2.2.2]octenones 13a-c to 15a-c (direct method) in low to moderate yields with the concomitant formation of considerable amounts of dimers 9-11. To retard dimerization and to improve the yields of the requisite bicyclo[2.2.2]octenones, a detour method comprised of sequential bromination of 2-methoxyphenols 1-4, oxidation and Diels-Alder reaction, and debromination has been developed. The oxidation of bromophenols 17-20 produced MOBs 21-24 which are stable enough to be isolated. The MOBs 21-24 underwent cycloaddition with electron-deficient dienophiles in a very efficient manner to afford the corresponding cycloadducts 25a-c to 28a-c in good to high yields without self-dimerization. When the cycloadducts 25a-c to 28a-c were treated with either Bu(3)SnH/AIBN or tributylammonium formate-palladium reagent, the corresponding debrominated products 13a-cto 16a-c were obtained in high to excellent yields. In general, the cycloadducts 13a-c to 15a-c were obtained in 20-40% higher yields via the detour method than those via the direct method. In both routes, the Diels-Alder reactions proceeded in a highly regio- and stereoselective manner to furnish a single cycloadduct in each case.  相似文献   

18.
Adenine tetrachlorocyclodiphospha(V)zane derivatives (III(a-c)) were prepared by the reaction of hexachlorocyclodiphospha(V)zane derivatives (I(a-c)) and adenine (II) as precursors. The synthesized compound's and their structures (III(a-c)) were firmly characterized (based on the presence of an inversion center) using FT-IR (4000-200 cm(-1)), UV-vis. (190-800 nm), (1)H, (13)C NMR and Mass spectral measurements in addition to C, H, N, P elemental analysis. The compounds (III(a-c)) were found to be a 1:2 molar ratio of (I(a-c)) and adenine (II) adducts, respectively. Confident and complete vibrational assignments are proposed for nearly all fundamental vibrations, along with detailed interpretation for all observed signals in both (1)H and (13)C NMR spectra of the investigated phospha(V)zanes (III(a-c)). In addition, unconstrained geometry optimization of III(a-c) were carried out by means of DFT-B3LYP/3-21G(d) calculations to provide new insight into the structural parameters and molecular geometries of compounds III(a-c). The results are reported herein and compared with similar molecules whenever appropriate.  相似文献   

19.
Cationic palladium (Pd)- and platinum (Pt)-phosphinooxazolidine catalysts 13a-c, 15a-d, 17a-c, and 19a-c were prepared from phosphinooxazolidine ligands 1-3, MCl(2) (M = Pd and Pt), and counterions, and the activities of the catalysts in the asymmetric Diels-Alder (DA) reactions of cyclic or acyclic dienes with imide dienophiles were investigated. These catalysts demonstrated high levels of catalytic activity. The cationic Pd-POZ complex 13c provided particularly excellent enantioselectivity (98% ee) in the DA reactions of cyclopentadiene with acryloyl-, crotonyl-, and fumaroyl-1,3-oxazolidin-2-ones (20a-c).  相似文献   

20.
2-Aminopyridines 1a-c and 1-aminoisoquinoline with 1-chloromethylbenzotriazole give 2-amino-1-[alpha-benzotriazol-1-ylmethyl]pyridinium chlorides 2a-c and 1-amino-2-(alpha-benzotriazol-1-ylmethyl)isoquinolinium++ + chloride 12, respectively. Compounds 2a-c and 12 react with aryl aldehydes 3a-h to afford imidazolo[1,2-a]pyridines 7a-k and imidazolo[2, 1-a]isoquinolines 13a,b in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号