首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We consider the Hamiltonian system which is invariant under locally Hamiltonian (non-Poissonian) action of torus. We show that when a certain set of conditions is satisfied the majority of motions in a sufficiently small neighbourhood of system’s relative equilibrium are quasi-periodic and cover coisotropic invariant tori.  相似文献   

2.
The theorem on symmetries is proved that states that a Liouville-integrable Hamiltonian system is non-degene\-rate in Kolmogorov's sense and has compact invariant submanifolds if and only if the corresponding Lie algebra of symmetries is abelian. The theorem on symmetries has applications to the characterization problem, to the integrable hierarchies problem, to the necessary conditions for the strong dynamical compatibility problem, and to the problem on master symmetries. The invariant necessary conditions for the non-degenerate C-integrability in Kolmogorov's sense of a given dynamical system V are derived. It is proved that the C-integrable Hamiltonian system is non-degenerate in the iso-energetic sense if and only if the corresponding Lie algebra of the iso-energetic conformal symmetries is abelian. An extended concept of integrability of Hamiltonian systems on the symplectic manifolds M n , n= 2k, is introduced. The concept of integrability describes the Hamiltonian systems that have quasi-periodic dynamics on tori or on toroidal cylinders of an arbitrary dimension . This concept includes, as a particular case, all Hamiltonian systems that are integrable in Liouville's classical sense, for which . The A-B-C-cohomologies are introduced for dynamical systems on smooth manifolds. Received: 16 January 1996 / Accepted: 3 July 1996  相似文献   

3.
We consider a class of quasi-integrable Hamiltonian systems obtained by adding to a non-convex Hamiltonian function of an integrable system a perturbation depending only on the angle variables. We focus on a resonant maximal torus of the unperturbed system, foliated into a family of lower-dimensional tori of codimension 1, invariant under a quasi-periodic flow with rotation vector satisfying some mild Diophantine condition. We show that at least one lower-dimensional torus with that rotation vector always exists also for the perturbed system. The proof is based on multiscale analysis and resummation procedures of divergent series. A crucial role is played by suitable symmetries and cancellations, ultimately due to the Hamiltonian structure of the system.  相似文献   

4.
5.
《Physics Reports》2002,365(1):1-64
We study the stability of Hamiltonian systems in classical mechanics with two degrees of freedom by renormalization-group methods. One of the key mechanisms of the transition to chaos is the break-up of invariant tori, which plays an essential role in the large scale and long-term behavior. The aim is to determine the threshold of break-up of invariant tori and its mechanism. The idea is to construct a renormalization transformation as a canonical change of coordinates, which deals with the dominant resonances leading to qualitative changes in the dynamics. Numerical results show that this transformation is an efficient tool for the determination of the threshold of the break-up of invariant tori for Hamiltonian systems with two degrees of freedom. The analysis of this transformation indicates that the break-up of invariant tori is a universal mechanism. The properties of invariant tori are described by the renormalization flow. A trivial attractive set of the renormalization transformation characterizes the Hamiltonians that have a smooth invariant torus. The set of Hamiltonians that have a non-smooth invariant torus is a fractal surface. This critical surface is the stable manifold of a single strange set encompassing all irrational frequencies. This hyperbolic strange set characterizes the Hamiltonians that have an invariant torus at the threshold of the break-up. From the critical strange set, one can deduce the critical properties of the tori (self-similarity, universality classes).  相似文献   

6.
This is a general and exact study of multiple Hamiltonian walks (HAW) filling the two-dimensional (2D) Manhattan lattice. We generalize the original exact solution for a single HAW by Kasteleyn to a system ofmultiple closed walks, aimed at modeling a polymer melt. In 2D, two basic nonequivalent topological situations are distinguished. (1) the Hamiltonian loops are allrooted andcontractible to a point:adjacent one to another, and, on a torus,homotopic to zero. (2) the loops can encircle one another and, on a torus, canwind around it. Forcase 1, the grand canonical partition function and multiple correlation functions are calculated exactly as those of multiple rooted spanningtrees or of a massive 2Dfree field, critical at zero mass (zero fugacity). The conformally invariant continuum limit on a Manhattantorus is studied in detail. The melt entropy is calculated exactly. We also consider the relevant effect of free boundary conditions. The number of single HAWs on Manhattan lattices with other perimeter shapes (rectangular, Kagomé, triangular, and arbitrary) is studied and related to the spectral theory of the Dirichlet Laplacian. This allows the calculation of exact shape-dependent configuration exponents y. An exact surface critical exponent is obtained. Forcase 2, nested and winding Hamiltonian circuits are allowed. An exact equivalence to thecritical Q-state Potts model exists, whereQ 1/2 is the walk fugacity. The Hamiltonian system is then always critical (forQ<-4). The exact critical exponents, in infinite numbers, are universal and identical to those of theO(n=Q 1/2) model in its low-temperature phase, i.e. are those of dense polymers. The exact critical partition functions on the torus are given from conformai invariance theory. These models 1 and 2 yield the two first exactly solved models of polymer melts.  相似文献   

7.
We consider a renormalization group transformation for analytic Hamiltonians in two or more dimensions, and use this transformation to construct invariant tori, as well as sequences of periodic orbits with rotation vectors approaching that of the invariant torus. The construction of periodic and quasiperiodic orbits is limited to near-integrable Hamiltonians. But as a first step toward a non-perturbative analysis, we extend the domain of to include any Hamiltonian for which a certain non-resonance condition holds. Received: 5 October 1999 / Accepted: 2 February 2000  相似文献   

8.
 We consider the Navier-Stokes equation on a two dimensional torus with a random force which is white noise in time, and excites only a finite number of modes. The number of excited modes depends on the viscosity ν, and grows like ν -3 when ν goes to zero. We prove that this Markov process has a unique invariant measure and is exponentially mixing in time. Received: 14 March 2002 / Accepted: 7 May 2002 Published online: 22 August 2002  相似文献   

9.
An exact invariant is derived for n‐degree‐of‐freedom non‐relativistic Hamiltonian systems with general time‐dependent potentials. To work out the invariant, an infinitesimalcanonical transformation is performed in the framework of the extended phase‐space. We apply this approach to derive the invariant for a specific class of Hamiltonian systems. For the considered class of Hamiltonian systems, the invariant is obtained equivalently performing in the extended phase‐space a finitecanonical transformation of the initially time‐dependent Hamiltonian to a time‐independent one. It is furthermore shown that the invariant can be expressed as an integral of an energy balance equation. The invariant itself contains a time‐dependent auxiliary function ξ (t) that represents a solution of a linear third‐order differential equation, referred to as the auxiliary equation. The coefficients of the auxiliary equation depend in general on the explicitly known configuration space trajectory defined by the system's time evolution. This complexity of the auxiliary equation reflects the generally involved phase‐space symmetry associated with the conserved quantity of a time‐dependent non‐linear Hamiltonian system. Our results are applied to three examples of time‐dependent damped and undamped oscillators. The known invariants for time‐dependent and time‐independent harmonic oscillators are shown to follow directly from our generalized formulation.  相似文献   

10.
We consider a Euclidean invariant interaction Hamiltonian which is a polynomial in smeared Fermion field operators (the smearing function providing an ultraviolet cut-off). By considering Guenin's perturbation series for the time-development of the theory, we show that time-displacements define a one-parameter group of automorphisms of the field algebra att=0, which acts continuously in the time-parameter. Results are obtained for any dimension of space and for both relativistic and nonrelativistic forms for the free Hamiltonian. In special cases the total Hamiltonian is a positive self-adjoint operator in Fock space, thus defining a concrete non-relativistic quantized field with non-trivial particle production.Supported in part by the United States Air Force under contract AFOSR 500-66.  相似文献   

11.
The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton-Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational.  相似文献   

12.
The set of stationary measures of an infinite Hamiltonian system with noise is investigated. The model consists of particles moving in with bounded velocities and subject to a noise that does not violate the classical laws of conservation, see [OVY]. Following [LO] we assume that the noise has also a finite radius of interaction, and prove that translation invariant stationary states of finite specific entropy are reversible with respect to the stochastic component of the evolution. Therefore the results of [LO] imply that such invariant measures are superpositions of Gibbs states. Received: 26 September 1996 / Accepted: 3 January 1997  相似文献   

13.
The Hamiltonian system formed by a Klein-Gordon vector field and a particle in ℝ3 is considered. The initial data of the system are given by a random function, with finite mean energy density, which also satisfies a Rosenblatt- or Ibragimov-type mixing condition. Moreover, initial correlation functions are assumed to be translation invariant. The distribution μ t of the solution at time t ∈ ℝ is studied. The main result is the convergence of μ t to a Gaussian measure as t → ∞, where μ is translation invariant.  相似文献   

14.
The classical Hamiltonian system of time-dependent harmonic oscillator driven by an arbi- trary external time-dependent force is considered. Exact analytical solution of the corresponding equations of motion is constructed in the framework of the technique based on WKB approach. Energy evolution for the ensemble of uniformly distributed w.r.t, the canonical angle initial conditions on the initial invariant torus is studied. Exact expressions for the energy moments of arbitrary order taken at arbitrary time moment are analytically derived. Corresponding character- istic function is analytically constructed in the form of infinite series and numerically evaluated for certain values of the system parameters. Energy distribution function is numerically obtained in some particular cases. In the limit of small initial ensemble's energy the relevant formula for the energy distribution function is analytically derived. Keywords: classical dynamics, Hamiltonian systems, linear oscillator, energy distribution func- tion, WKB approach.  相似文献   

15.
A distribution of virtual black holes in the vacuum will induce modifications in the density of states for small perturbations of gravitational and matter fields. If the virtual black holes fill the volume of a typical spacelike surface then perturbation theory becomes more convergent and may even be finite, depending on how fast the number of virtual black holes increases as their size decreases. For distributions of virtual black holes which are scale invariant the effective dimension of space-time is lowered to a noninteger value less than 4, leading to an interpretation in terms of fractal geometry. In this case general relativity is renormalizable in the 1/N expansion without higher derivative terms. As the Hamiltonian is not modified the theory is stable.This essay received the second award from the Gravity Research Foundation for the year 1985—Ed.  相似文献   

16.
We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443–461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43–103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products.   相似文献   

17.
We consider infinite dimensional Hamiltonian systems. We prove the existence of “Cantor manifolds” of elliptic tori–of any finite higher dimension–accumulating on a given elliptic KAM torus. Then, close to an elliptic equilibrium, we show the existence of Cantor manifolds of elliptic tori which are “branching” points of other Cantor manifolds of higher dimensional tori. We also answer to a conjecture of Bourgain, proving the existence of invariant elliptic tori with tangential frequency along a pre-assigned direction. The proofs are based on an improved KAM theorem. Its main advantages are an explicit characterization of the Cantor set of parameters and weaker smallness conditions on the perturbation. We apply these results to the nonlinear wave equation.  相似文献   

18.
楼智美  陈子栋  汪文珑 《中国物理》2005,14(8):1483-1485
将非中心势动力学系统的运动微分方程写成Ermakov形式,得到Ermakov不变量. 运用Hamilton理论,把Ermakov不变量当作Hamiltonian 函数,在四维相空间中建立了非中心势动力学系统的Poisson 结构。结果表明:此Poisson 结构是一退化的结构,而系统具有四个不变量,即Hamiltonian 函数,Ermakov不变量及两个Casimir函数。  相似文献   

19.
The Hamiltonian of a system of quantum particles minimally coupled to a quantum field is considered for arbitrary coupling constants. The Hamiltonian has a translation invariant part. By means of functional integral representations the existence of an invariant domain under the action of the heat semigroup generated by a self-adjoint extension of the translation invariant part is shown. With a non-perturbative approach it is proved that the Hamiltonian is essentially self-adjoint on a domain. A typical example is the Pauli–Fierz model with spin 1/2 in nonrelativistic quantum electrodynamics for arbitrary coupling constants. Received: 26 May 1999 / Accepted: 9 November 1999  相似文献   

20.
We consider time-dependent Schrödinger equations with a double well potential and an external nonlinear, both local and non-local, perturbation. In the semiclassical limit, the finite dimensional eigenspace associated to the lowest eigenvalues of the linear operator is almost invariant for times of the order of the beating period and the dominant term of the wavefunction is given by means of the solutions of a finite dimensional dynamical system. In the case of local nonlinear perturbation, we assume the spatial dimension d=1 or d=2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号