首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 90 毫秒
1.
用密度泛函理论(DFT)和从头算方法,对HNO与O自由基反应进行了研究。在(U)B3LYP/6-311G**和(U)B3LYP/aug-cc-pVTZ水平下优化了反应通道上各驻点(反应物、中间体、过渡态及产物)的几何构型。在(U)QCISD/aug-cc-pVTZ水平下计算了各物种的单点能,并对总能量进行了零点能校正。研究结果表明,HNO与O自由基反应过程中存在O → N、O → O和O → H进攻的竞争机制,且存在着多条反应通道。采用过渡态理论计算了600~2 000 K温度范围内3条慢反应通道的速率常数。求得lnk和1/T之间的线性关系。3种通道的阿累尼乌斯指前因子分别为1.469 × 1010、1.22 × 1010(1.06 × 1010)和2.26 × 1013。  相似文献   

2.
使用密度泛函理论研究了Pd掺杂的Ni(111),Ni(100)和Ni(211)表面最稳定的结构,同时考察了干净的和Pd掺杂的Ni表面催化CH4解离反应的活性.结果表明,由Pd原子取代最外层Ni原子而形成的表面Pd掺杂的Ni表面在热力学上最为稳定,亚表面Pd掺杂的Ni表面在热力学上都不稳定; 而对于表面Pd吸附的Ni表面,只有Pd/Ni(211)表面是稳定的.表面掺杂的Pd/Ni表面上CH4解离中间体(CH4,CH3,CH,C,H)吸附能的计算结果表明,Pd的掺杂在不同程度上减弱了除CH4之外各解离中间体的吸附能.另外,CH4和CH均优先在Ni(211)和Pd/Ni(211)台阶面上解离,其次是在比较开阔的Ni(100)和Pd/Ni(100)表面上.Pd的掺杂不同程度上提高了CH4和CH解离的能垒,对于活性最高的Ni(211)面,Pd的掺杂使得CH脱氢的能垒较CH4脱氢的高,改变了其速率控制步骤,从而抑制了积碳的生成.  相似文献   

3.
研究发现,Pd和Co_3O_4催化剂均可有效地催化甲烷燃烧反应,且Pd掺杂的Co_3O_4催化剂上甲烷反应活性优于单纯的Pd和Co_3O_4催化剂,可见两者存在明显的协同效应.然而由于Co_3O_4本身复杂的表面配位环境,相关理论模拟研究依然较少.同时,由于甲烷分子中C–H键有着非常高的键能,且该分子具有很高的对称性,导致C–H键活化往往是甲烷选择转化和完全燃烧反应中最困难的一步.由于Co_3O_4表面电子结构比较复杂,因此本文基于Co_3O_4(001)晶面的两种不同暴露面来构建和模拟Pd掺杂Co_3O_4表面Pd.O位点的甲烷反应活性.对于Co_3O_4(001)–A晶面,暴露面金属离子只有未饱和的八面体Co~o,而(001)–B晶面,还有四面体Cot.由于Pd取代Cot后所形成的Pd/(001)–B面更不稳定,因而选择了较稳定的Pd替换Co~o结构模型.基于第一性原理PBE+U计算的Pd/(001)表面甲烷活化能垒来探讨Pd掺杂对Co_3O_4表面催化活性的影响.计算表明,甲烷在Pd掺杂的(001)面上最低解离能垒为0.68 eV,明显低于在Co_3O_4(001)和(011)面的(分别为0.98和0.89 eV),表明Pd掺杂的(001)表面催化活性要远高于纯的Co_3O_4(001)和(011)表面.为了进一步理解Pd掺杂影响Co_3O_4表面甲烷反应活性的原因,我们计算了反应位点相关原子的Bader电荷.结果表明,当CH3δ–吸附于Pd/(001)–A面Pd位点时,Pd较(001)面上Co位点能从CH3~(δ–)获得更多电子,这与Pd较Co有更强的氧化性一致.我们也对比了(001)–A,(001)–B,Pd/(001)–A和Pd/(001)–B在氧气分压为常压及不同温度下表面能的大小,并发现在与反应相关的温度区间(001)–A表面较(001)–B表面更为稳定,同样地Pd/(001)–A表面也较Pd/(001)–B表面更为稳定,且Pd/(001)–A表面与(001)–A表面稳定性差别不大,因此Pd单原子掺杂的(001)表面模型在热力学上较为稳定,且根据计算的能垒,(001)–A和Pd/(001)–A表面对甲烷活化的贡献最大.为了更好与实验结果对比,我们构建了简单的动力学模型,并计算了甲烷在Co_3O_4(001),(011)和1%,2%,3%Pd掺杂的Co_3O_4(001)表面的甲烷燃烧速率.计算表明即使较低量的Pd也可明显提高甲烷燃烧速率,与实验数据吻合较好,表明掺杂Pd显著增加Co_3O_4催化甲烷燃烧.  相似文献   

4.
N掺杂石墨烯作为一种具有较高活性和稳定性的氧还原反应(ORR)催化剂,受到人们的广泛关注。然而不同的N掺杂类型对氧还原活性的影响一直存在争议。本文通过密度泛函理论分别对石墨型和吡啶型两种N掺杂石墨烯的ORR活性进行比较研究。能带结构分析表明,石墨氮掺杂石墨烯(GNG)的导电性随掺N量的增加而降低;吡啶氮掺杂石墨烯(PNG)的导电性则随掺N量的增加先提高后降低。当N掺杂浓度达到4.2%(原子分数)时,PNG具有最优导电性。且当N掺杂浓度大于1.4%时,PNG的导电率总是高于GNG。氧还原自由能阶梯曲线发现O2的质子化是整个氧还原过程的潜在控制步骤。在同等氮掺杂浓度下,O2的质子化自由能能变在GNG上低于在PNG上,意味着若在同等电子传输能力的情况下,GNG具有比PNG更优异的催化活性。进一步分析发现:当N掺杂浓度在低于2.8%时,GNG和PNG导电性差异小,其催化ORR活性由O2质子化反应难易程度决定,GNG的催化活性优于PNG;当N掺杂浓度高于2.8%时,氮掺杂石墨烯的电子传输性能(导电性)成为决定催化剂ORR活性的主要因素,因此PNG表现出较GNG更高的活性。  相似文献   

5.
采用量子化学密度泛函理论对CH4/CO2两步法合成乙酸反应中表面碳化物CHx (x=0~3)在Co和Pd模型表面上不同吸附活性位上的吸附能、空间构型和反应吉布斯自由能进行了系统性的比较研究. 计算结果表明, CH4/CO2两步反应在单一金属Co或Pd催化剂上在常压等温条件下不能有效进行,但在Co和Pd组成的双金属催化剂上,两步反应在常压等温下可以进行. 在Co和Pd双金属催化剂上,金属Co活化CH4生成金属碳化物CHxCo(x=0, 1)为热力学允许反应,其后CHx溢流到金属Pd上形成CHyPd (y=1~3)碳化物,最后CO2插入CHyPd生成乙酸,后两者在常压等温情况下也为热力学允许反应,并且在435 K以上可以与前者构成等温循环. 计算结果与实验结果吻合.  相似文献   

6.
采用密度泛函理论计算研究了清洁的以及Pd掺杂的ZnO(1120)面上水分子的吸附和解离.结果表明,在清洁ZnO(1120)上,水分子倾向于分子吸附,解离吸附较为困难.在Pd掺杂的ZnO上,水分子仍倾向吸附在Zn原子上,且吸附能与其在清洁ZnO表面的相当.然而,Pd的掺杂可增强水解离产物OH和H的吸附,从而显著提高了水的解离活性,相应的水解离能垒为0.36eV,放热0.21eV.  相似文献   

7.
用密度泛函方法分别研究了单态和三态 CH3 O·2 NO CH3 O· NO2 气相反应 .结果表明 ,反应中 NO进攻 CH3 O·2 经过了一个顺反异构化的过程 ,摘取 CH3 O·2 的端基氧 .整个反应是吸热反应 ,理论计算吸热值为 5 0 .93k J/ mol,单态为多通道多步骤反应 ,决定速度步骤的能垒为 1 90 .6 1 k J/ mol.而三态为单通道反应 ,其决定速度步骤的能垒为 1 6 3.31 k J/ mol.三态反应为最佳反应通道 .该反应的研究将为保护臭氧层及大气环境提供重要的理论依据 .  相似文献   

8.
CH3O2·+ClO气相反应的密度泛函理论研究   总被引:1,自引:1,他引:1  
用密度泛函方法在CCSD(T)/ 6-311++G// B3LYP/ 6-311G**水平上研究了气相反应CH3O2*+ClO的反应机理.得到了不同能量产物的可能的反应通道,获得反应势能面.整个反应过程为多通道反应,经过多个步骤完成,共找到7个中间体和10个过渡态,产物1CH3OCl+3O2(P1)和1 CH2O+1HOOCl(P4)为能量较低产物,通道1a:R→IM1→TS1/ 3→IM3→P1,4a:R→IM1→TS1/ P4→P4和4b:R→IM2→TS2/ P4→P4为较为可行的反应通道.  相似文献   

9.
焙烧温度对 Pd/Al2O3 催化剂上甲烷燃烧反应性能的影响   总被引:1,自引:0,他引:1  
高典楠  王胜  刘莹  张纯希  王树东 《催化学报》2010,31(11):1363-1368
 考察了载体与催化剂焙烧温度对 Pd/Al2O3 催化剂上低浓度甲烷催化燃烧反应性能的影响. 采用 X 射线衍射、透射电镜、N2 物理吸附、NH3 程序升温脱附和 O2 程序升温氧化等手段对载体和催化剂进行了表征. 结果表明, 焙烧温度对催化剂活性及稳定性的影响显著. 随着载体焙烧温度的升高, Al2O3 的比表面积、物相结构、酸中心的数量及强度明显改变, 相应的 Pd/Al2O3 催化剂中载体与 Pd 的相互作用减弱, Pd 分散度降低. 当载体焙烧温度为 1 100 °C, Pd/Al2O3 焙烧温度为 200 °C 时, 所得催化剂在 260 h 的连续反应中, 甲烷转化率始终维持在 99%以上.  相似文献   

10.
以醋酸钯为前身盐, BaO-Al2O3复合氧化物为载体制备了系列负载型钯催化剂. BET和XRD表征结果表明,复合氧化物在制备过程中发生固相反应所生成的BaAl2O4 可以阻止γ-Al2O3向α相的转变,显著增强Al2O3的热稳定性.以甲烷燃烧为模型反应的评价结果表明, BaO的引入提高了催化剂上甲烷燃烧反应的活性和稳定性.  相似文献   

11.
天然气储量巨大,被广泛应用于发电和工业窑炉等.甲烷作为天然气中最主要的成分,是氢碳比最高的碳氢化合物,其温室效应显著.因此,不完全燃烧所引起的CH4排放,不仅导致能源浪费,同时也可造成环境污染.与传统火焰燃烧相比,CH4催化燃烧具有更高的燃烧效率,并可显著地减少大气污染物(CO,NOx和未完全燃烧的烃类)的排放.贵金属Pd催化剂对CH4催化燃烧表现出优异的催化性能,其中Pd颗粒的尺寸、Pd的化学状态、载体性质及其与Pd之间的相互作用等对其活性有显著影响.本文以不同温度(600,800,1000和1200℃)焙烧所得SnO2为载体,通过等体积浸渍法制备了Pd/SnO2催化剂,研究了SnO2焙烧温度对CH4催化燃烧性能的影响.结果表明,所制备的SnO2均为锐钛矿结构,并且随着SnO2焙烧温度的升高,晶型愈加完美,晶粒尺寸显著增大.催化剂中引入的Pd以高分散形式存在,CH4催化燃烧反应活性随着载体SnO2焙烧温度的升高而显著提高,其中Pd/SnO2(1200)表现出最高的CH4燃烧活性,起燃温度和最低全转化温度分别为265和390℃.在反应温度为300℃时,Pd/SnO2(1200)上甲烷的反应速率是Pd/SnO2(600)的36倍.XPS等结果表明,随着SnO2焙烧温度的升高,Pd的化学状态也有所差异:对于低温焙烧的SnO2(<800℃),Pd以Pd4+的形式进入到SnO2晶格内;随着焙烧温度的升高(>1000℃),Pd以Pd2+物种的形式存在于载体表面.结合活性评价结果推测,Pd的化学状态可能并非是影响催化剂活性的最关键因素.TEM等结果表明,Pd/SnO2(1000)上PdO的(101)晶面与载体SnO2的(101)晶面相近,分别为0.2641 nm和0.2638 nm.O2-TPD和CH4-TPR结果表明,Pd/SnO2(1200)催化剂上单位Pd原子上O2的脱附量是Pd/SnO2(600)的3倍,单位Pd原子上CH4的消耗量比催化剂Pd/SnO2(600)高出45%.因此,PdO和SnO2在构型上存在的晶面匹配可提高催化剂对O2的活化能力.综上所述,SnO2和贵金属之间的晶格匹配有利于氧在Pd-SnO2界面的活化,同时载体SnO2中的晶格氧亦可以通过"氧反溢流机理"补充到表面PdO/Pd上,从而增强催化剂对O2的吸附和活化能力,并提高CH4催化燃烧反应性能.升高SnO2的焙烧温度可强化SnO2和贵金属之间的晶格匹配,从而使催化剂活性随着SnO2焙烧温度升高而增大.  相似文献   

12.
与硫氧化物、氮氧化物、一氧化碳以及悬浮颗粒一样,大部分挥发性有机物(VOCs)污染大气环境.控制 VOCs排放有多种方法,其中催化氧化法是一种有效技术,关键在于获得高效催化剂.
  近年来,负载过渡金属和贵金属催化剂因具有比单纯负载贵金属和单纯负载过渡金属氧化物更好的催化性能而备受关注.在负载贵金属催化剂中,高比表面积载体负载 Pt, Pd或 Rh催化剂得到广泛而深入的研究,尽管这些催化剂成本较高,但是其对 VOCs氧化反应显示了很高的低温催化活性.众所周知,催化活性取决于贵金属和 VOCs的种类,不同负载贵金属催化剂对特定反应会表现出不同的催化活性.负载 Pt催化剂对长链碳氢化合物和芳香族化合物氧化反应表现出更高的活性.相对于负载贵金属催化剂,负载过渡金属氧化物催化剂不仅具有良好的氧化活性,而且价格低廉.迄今已发现许多过渡金属氧化物(如 Co3O4, Cr2O3和 MnO2等)对典型 VOCs氧化反应具有催化活性,其中 Co3O4的催化活性尤为突出.研究表明, Co3O4的性质和分散度是决定其性能的关键因素,制备方法、载体性质和过渡金属氧化物负载量对 Co3O4的物化性质具有重要影响,而且在负载 Pt催化剂中添加金属氧化物能改善其催化性能.尽管多孔氧化铝是一种常用的载体材料,但目前尚无文献报道三维有序大孔-介孔氧化铝负载 Co3O4和 Pt纳米粒子催化剂的制备及其对甲苯氧化反应的催化性能.
  本文采用聚甲基丙烯酸甲酯微球胶晶模板法、等体积浸渍法和聚乙烯醇保护的硼氢化钠还原法制备了三维有序大孔-介孔(3DOM Al2O3)负载 Co3O4和 Pt (xPt/yCo3O4/3DOM Al2O3, Pt的质量分数(x%)为0-1.4%, Co3O4的质量分数(y%)为0-9.2%)纳米催化剂.通过电感耦合等离子体原子发射光谱、X射线衍射、氮气吸附-脱附、扫描电子显微镜、透射电子显微镜、选区电子衍射、X射线光电子能谱及氢气程序升温还原等技术表征了催化剂的物化性质,利用固定床微型石英反应器评价了催化剂对甲苯氧化反应的催化活性.结果表明,xPt/yCo3O4/3DOMAl2O3催化剂具有多级孔结构(大孔孔径为180–200 nm,介孔孔径为4–6 nm),比表面积为94?102 m2/g.粒径为18.3 nm的 Co3O4纳米粒子和粒径为2.3?2.5 nm的 Pt纳米粒子均匀分散在3DOM Al2O3表面.在xPt/yCo3O4/3DOM Al2O3催化剂中,1.3Pt/8.9Co3O4/3DOM Al2O3拥有最高的 Oads浓度、最好的低温还原性和最高的甲苯氧化反应催化活性(当空速为20000mL g–1 h–1时,甲苯转化率达90%的反应温度为160oC).基于催化剂的活性数据和结构表征,我们认为,1.3Pt/8.9Co3O4/3DOM Al2O3优异的催化性能与其高分散的 Pt纳米粒子、高的 Oads浓度、好的低温还原性、Pt和 Co3O4纳米粒子间的强相互作用以及多级孔结构相关.  相似文献   

13.
A series of PdNi/Al2O3 catalysts with different compositions was prepared by co-reduction method. The influence of Ni amount on the catalytic combustion of methane was studied. X-ray diffractometry and X-ray photo-electron spectroscopy were employed to characterize the dispersion and electronic state of the active phase. Tempe-rature-programmed oxidation was carried out to study the thermal stability affected by Ni doping. It has been demonstrated that Ni addition changed particle size and oxidation state of PdOx. The results indicate that the promotion of Ni to the Pd/Al2O3 resulted from both size effect and electronic effect. In addition, the thermal stability of the Ni-doped catalysts were enhanced.  相似文献   

14.
 分别采用沉淀氧化法、均匀沉淀法及络合燃烧法制备了Co3O4/CeO2复合氧化物催化剂,并在干燥及湿气条件下进行了CO氧化反应. 结果表明,采用沉淀氧化法经538 K焙烧制得的Co3O4/CeO2催化剂具有优异的CO低温氧化活性和较高的抗湿性能. 在196 K条件下,该催化剂上CO氧化的转化率为99%, 并且可连续保持400 min以上; 当温度上升到298 K时,经过 2400 min反应后, CO的转化率仍可达到94%; 当反应气中含3.1%湿气,温度为383 K时,经过2400 min反应后, CO的转化率仍保持在79%. 实验表明, Co3O4/CeO2催化剂的制备方法及焙烧温度对Co3O4与CeO2之间的相互作用有显著的影响,进而影响催化剂催化CO低温氧化的活性.  相似文献   

15.
采用浸渍法制备了Pd促进ZnO/Al2O3催化剂, 考察了该催化剂作用时, 在水醇摩尔比为3, 常压和450 °C工作条件下乙醇水蒸气重整(SRE)制氢反应性能. 研究结果表明, 在该催化剂体系作用下的SRE反应过程中, H2、CH3CHO为主要产物, 与ZnO/Al2O3催化剂不同, Pd能促使CH3CHO发生C-C键断裂反应, 显著提高C2H5OH转化率及H2选择性, 分别达65%、55%. 还利用BET比表面积、透射电子显微镜(TEM)、热重-差示扫描量热-质谱(TG-DSC-MS)等表征手段考察了催化剂失活以及表面积炭情况, 发现Pd的加入对催化剂总积炭量并无明显影响.  相似文献   

16.
室内空气中低浓度甲醛严重危害人类健康,高效去除甲醛成为人们关注的课题.在各种去除甲醛的方法中,吸附法简单快速,但是存在饱和吸附量的限制;光催化降解法能够去除低浓度甲醛,却会产生一些如臭氧等二次污染物;低温催化氧化甲醛由于其高效和产物矿化完全而成为具有实际应用前景的技术.虽然贵金属负载型催化剂具有室温去除甲醛的能力,可是高昂的成本使其难以大规模应用.过渡金属氧化物因其良好的催化氧化性能和较低的成本逐渐成为研究重点.
  近期研究发现,含钴的氧化物具有较高的催化氧化甲醛能力,同时一些碱金属如钠或钾的加入可增加催化剂表面羟基物种,从而有效促进了甲醛氧化.沉淀法具有操作简单和条件易于控制等特点,因此本文选取不同的沉淀剂(NH3·H2O, KOH, NH4HCO3, K2CO3, KHCO3)采用沉淀法制备了 Co3O4催化剂并进行了甲醛催化氧化性能测试.采用 X射线衍射(XRD)、原子吸收光谱(AAS)、氢气程序升温脱附(H2-TPD)、X射线光电子能谱(XPS)和原位漫反射红外光谱(in suit-DRIFTS)等表征手段探讨了不同沉淀剂制备的催化剂催化甲醛氧化性能差异的原因.
  结果显示,在以 KHCO3为沉淀剂制备的 Co3O4催化剂(KHCO3-Co)上甲醛(100 ppm)完全氧化成 CO2的温度为90°C,明显优于其他样品.在以 NH4HCO3为沉淀剂制备的 Co3O4表面负载2 wt%的 K2CO3后(PC/AHC-Co)具有和 KHCO3-Co相似的催化性能. XRD结果表明,各沉淀剂制备的 Co3O4均为尖晶石型,晶粒尺寸约为18nm,衍射峰位置无明显偏移说明没有其他金属离子掺杂进 Co3O4晶体.结构表征还表明,采用含碳酸根或碳酸氢根离子试剂制备的样品具有较高的比表面积、孔体积和孔径,可能是焙烧阶段碳酸钴分解产生大量 CO2形成的,而负载 K2CO3的样品各参数均大幅降低,说明表面 K2CO3填补或堵塞了部分孔结构. AAS结果表明, KHCO3-Co和 PC/AHC-Co所含 K离子浓度相近并显著高出其他沉淀剂制备样品, XPS结果也证明了这一点.这可能是由于在用 KHCO3沉淀钴离子的过程中,钾离子裹挟在沉淀物中不易被洗涤干净,并且保留在焙烧后的样品中. H2-TPR和 XPS结果显示,用 KHCO3作为沉淀剂时可以增加 Co3O4催化剂表面 Co3+/Co2+比例从而提高了氧化能力,虽然本文 PC/AHC-Co样品有着最高的 Co3+/Co2+比例,但相对较低的比表面积和孔径减少了活性中心,使得其活性与 KHCO3-Co相似.insuit-DRIFTS结果表明, NH4HCO3-Co催化剂上羟基基团在甲醛吸附阶段会被大量消耗,并有二氧亚甲基(DOM)中间物种大量生成.在氧化阶段,随着温度升高, DOM逐渐减少,而甲酸盐和碳酸氢盐物种逐渐增多,最后各物种趋近催化剂的初始状态.在 KHCO3-Co催化剂上,甲醛吸附阶段有大量 DOM和甲酸盐物种生成,而羟基基团消耗并不明显.在氧化阶段随着温度升高, DOM逐渐减少,甲酸盐逐渐增多并最后消失,整个过程并未观测到碳酸氢盐物种生成.这说明 KHCO3-Co样品在催化氧化甲醛反应中能够再生羟基基团,进而提高了催化氧化甲醛活性.
  综上所述,以 KHCO3为沉淀剂制备的 Co3O4样品具有最佳的甲醛催化氧化性能,其在沉淀过程中样品上会残留一定量钾离子,其作用与在 Co3O4表面负载相当量的 K2CO3相似. Co3O4催化氧化甲醛活性高的主要原因是催化剂表面存在 K+和 CO32-并且具有适当的 Co3+/Co2+混合价态.  相似文献   

17.
CeO2和Co3O4助剂对镍基催化剂上CH4积碳和CO2消碳性能的影响   总被引:5,自引:0,他引:5  
采用脉冲微反技术研究了添加CeO2和Co3O4助剂对镍基催化剂上CH4积碳和CO2消碳性能的影响,并用BET,TGA,XPS及CO2-TPSR等技术对催化剂进行了表征. 结果表明,添加CeO2可以提高活性原子Ni0中d电子的密度; Ni0原子中d电子密度的增加在一定程度上抑制了CH4分子中C-H键σ电子向d轨道的迁移,降低了CH4裂解积碳性能; 同时加强了Ni0原子d轨道向CO2空反键π轨道的电子迁移,促进了CO2分子的活化,提高了CO2的消碳活性. 助剂Co3O4的添加则促进CH4的裂解积碳,抑制了CO2的消碳.分析表明,活性金属与半导体助剂之间存在的金属-半导体相互作用是影响这种机制的主要因素.  相似文献   

18.
采用CCSD(T)/cc-pVDZ//B3LYP/6-311++G(d,p)双水平计算方法研究了CH3CH2O+HCHO反应的微观反应机理. 结果表明, 标题反应主要存在5个抽氢和3个氢迁移异构化反应通道, 其中抽氢通道R→ IMa(CH3CH2O…CH2O)→TS1→ IM1b→P1(CH3CH2OH+CHO)为优势通道, 其表观活化能为14.65 kJ/mol. 利用变分过渡态理论(CVT)并结合小曲率隧道效应模型计算了主通道R1在275~1000 K温度范围内的速率常数kTST, kCVTkCVT/SCT, 在此温度区间内表观反应速率常数三参数表达式为kCVT/SCT=2.26×10-17 T0.57 exp(-1004/T), 显示具有正温度系数效应.  相似文献   

19.
采用水热法制备了Co3O4/CeO2(x)[x为钴铈原子摩尔比n(Co):n(Ce)=6:49:1]和Ce1-yCoyO2-δ(y=0.10.4)2个系列复合氧化物, 并表征了材料的物理化学性质, 考察了这些氧化物作为氧载体参与甲烷化学链转化(化学链燃烧和化学链部分氧化)的反应性能. 结果表明, 2类复合氧化物的甲烷反应活性均明显优于单一氧化物CeO2或Co3O4, 但2类氧载体上的甲烷反应产物的选择性具有明显差异. Ce1-yCoyO2-δ氧载体形成了Ce-Co-O固溶体, 储氧能力明显增强, 体相晶格氧迁移速率与甲烷活化速率匹配较好, 甲烷反应产物以CO和H2的合成气为主, 有利于甲烷的化学链部分氧化. Co3O4/CeO2(x)氧载体中CeO2与Co3O4之间的相互作用改善了材料的储氧能力和氧化活性, 其与甲烷反应时主要生成CO2, 有利于甲烷化学链燃烧. 连续性化学链循环实验表明, 2类氧载体均具有较好的再生性能和循环稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号