首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
光催化技术在环境净化方面,尤其是降解有机污染物应用上表现出潜在价值.可见光响应型光催化剂具有优异的光吸收特性和高的光催化活性,因而备受人们关注并被大量研究.Pb_3Nb_2O_8光催化剂由于其自身的稳定性以及对可见光响应的能力是一种潜在的高效光催化材料.但是,有报道表明Pb_3Nb_2O_8光催化剂对可见光降解有机物活性较低,这主要归因于它较小的比表面积以及较高的电子-空穴复合率.为了解决这个问题,本文采用蒸发自组装技术制备了大比表面积的介孔Pb_3Nb_2O_8,采用光沉积方式在介孔Pb_3Nb_2O_8上负载了均匀分散的纳米Ag颗粒,并对不同焙烧温度、载Ag量以及进一步的热处理对光催化活性的影响作了深入研究.XRD结果表明,在400℃和500℃焙烧条件下获得的样品属于Pb_3Nb_2O_8相,600℃焙烧使得介孔Pb_3Nb_2O_8发生相变.氮气吸附-脱附表征表明,升高焙烧温度使样品比表面积从最大69 m~2/g(400℃)减小到19 m~2/g(600℃).透射电子显微镜分析结果表明,所获得样品具有蠕虫状介孔孔道结构,并且Ag纳米颗粒均匀分散在介孔Pb_3Nb_2O_8表面.紫外-可见吸收光谱表明,介孔Pb_3Nb_2O_8的吸收边拖尾到530-550 nm,担载Ag之后光吸收发生显著变化,光吸收拓展到700 nm.光催化活性测试采用可见光催化氧化脱氢异丙醇气体至丙酮反应.结果表明,在420 nm以上可见光照射下,1 h内的光催化反应过程中,采用高温固态反应制备的Pb_3Nb_2O_8上丙酮生成速率为2.9 ppm/min,而介孔Pb_3Nb_2O_8催化剂上最高可达55.5 ppm/min.介孔Pb_3Nb_2O_8负载Ag之后,400℃焙烧的介孔Pb_3Nb_2O_8光催化活性显著提高,降解速率达120.7 ppm/min.通过介孔Pb_3Nb_2O_8和固相合成Pb_3Nb_2O_8的光催化活性对比发现,大比表面积样品的光催化活性显著提高.这可归结为大的比表面积提供了大量的催化反应活性位点,从而提高了光催化反应活性,此外介孔材料的孔壁结构为纳米结构,有利于光生电子-空穴传输到表面参加反应.担载Ag后介孔Pb_3Nb_2O_8的光催化活性进一步提高,主要是因为助催化剂Ag纳米颗粒促进了光生电子-空穴分离,延长了载流子寿命,从而提高了光催化活性.  相似文献   

2.
传统的Ti O2半导体光催化剂存在光谱响应范围窄、量子效率低及不易回收等不足,使其在实际应用中受到限制.通过离子掺杂、贵金属沉积和半导体复合等方法对Ti O2进行改性可以拓展其光响应范围,其中半导体复合方法最为常用.复合半导体的特殊能带结构能够有效促进光生载流子的界面迁移,实现光生电荷的有效分离,提高光催化性能,且通过固定化或负载可改善Ti O2的可回收利用性能.鉴于此,本文针对半导体Ti O2的复合和负载制备及其光催化降解有机污染物的性能和反应机理进行了研究.采用条件温和、稳定的溶胶-凝胶法于低温制备出Ti O2/海泡石复合物,通过浸渍和焙烧将Ag2O负载于其上,修饰和拓展了Ti O2的可见光响应范围,最终获得了可见光响应、高效、稳定的Ag2O-Ti O2/海泡石复合光催化剂.利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附和紫外-可见光光谱(UV-vis)等手段对其物理化学特性进行了表征.XRD结果表明,复合样品中Ti O2呈锐钛矿相和金红石相的混合晶相.TEM结果表明,复合样品中存在Ag2O和Ti O2两种组分,晶格条纹相互交叠形成了异质结结构.UV-vis谱表明,与Ti O2/海泡石相比,Ag2O-Ti O2/海泡石复合光催化剂的吸收带边明显红移,展现了较强的可见光吸收能力.N2吸附-脱附结果表明,Ag2O-Ti O2/海泡石复合光催化剂具有较大的比表面积和介孔结构,这有助于增强催化剂对污染物的吸附能力并提供更多的复合位点.以酸性红G为模拟污染废水,研究了焙烧温度和Ag2O负载量等制备条件对所制催化剂可见光催化性能的影响.结果表明,在可见光照射下,焙烧温度为200°C,Ag2O负载量为10%条件下制备的复合光催化剂对酸性红G的降解率为98%,与Ag2O-Ti O2、Ag2O/海泡石和Ti O2/海泡石等复合物相比,Ag2O-Ti O2/海泡石复合光催化剂展现了优异的可见光催化性能.此外,Ag2O-Ti O2/海泡石复合光催化剂同样能够在可见光条件下有效降解常见室内空气污染物甲醛,进一步证实了催化剂优异的光催化性能.化学荧光法和活性物种捕获实验表明,复合光催化剂降解有机污染物的活性基团主要是光生空穴和超氧自由基.催化剂能带结构分析表明,Ag2O和Ti O2具有相匹配的能带结构,两者复合有利于光生载流子分离和迁移,增强催化剂光催化活性.海泡石作为光催化剂载体能够有效固载光催化成分,增加光催化剂有效表面积和活性位,有利于提高复合光催化剂的吸附性能和回收利用率.  相似文献   

3.
半导体光催化剂Ti O2因具有绿色环保无污染、化学稳定性好及可实现稳定产氢等优点而广泛应用于光解水、废水处理和空气净化等领域.然而,锐钛矿相Ti O2禁带宽度约为3.2 e V,仅对紫外光响应.而在太阳光中,44%左右为可见光,紫外光仅占不到4%.为了提高Ti O2对太阳光的利用率和在可见光照射下的光催化活性,近年来人们采用掺杂金属/非金属离子以及与可见光催化剂复合等方法对Ti O2进行改性.但是这些离子掺杂的方法会不可避免地在Ti O2晶格中形成结构缺陷,这些结构缺陷作为光生电子和空穴的复合中心不利于电子和空穴分离.最近研究表明,通过Ti3+自掺杂可以很好提高Ti O2可见光催化活性,但是目前制备Ti3+掺杂Ti O2的方法较复杂,形成的Ti3+掺杂易在表面积聚而被进一步氧化,影响其光催化稳定性,不利于实际应用.因此,开发具有良好电子-空穴分离效率的可见光催化剂引起了广泛的研究兴趣.本文通过原位自掺杂Ti3+来提高Ti O2可见光光催化活性.以Ti Cl3为钛源,H2O为溶剂,F127为软模板,采用溶剂挥发诱导自组装的方法制备了蠕虫状Ti3+自掺杂的介孔Ti O2.采用X射线衍射(XRD)、N2物理吸附、紫外-可见漫反射(UV-vis)、透射电子显微镜和电子顺磁共振(EPR)对所制备样品结构、结晶度和形貌等进行了表征分析.通过控制表面活性剂用量和焙烧温度优化了Ti3+自掺杂介孔Ti O2的光催化活性.结果表明,在模拟太阳光照射下,所制样品对气相光催化氧化NO和水相降解有机染料亚甲基蓝表现出优异的催化性能和稳定性.Ti3+自掺杂介孔Ti O2有效扩展了催化剂的光吸收范围,提高了光生电子空穴的迁移效率.其优异的光催化活性和稳定性主要归因于掺杂在Ti O+2骨架中的Ti3和所合成催化剂多孔性之间的协同效果.固体UV-vis结果表明,所合成的Ti O+2具有很好的可见光响应,主要归因于在Ti O2材料合成过程中,部分Ti3+未被完全氧化,Ti3掺入可以有效降低Ti O2的禁带宽度.通过计算可知合成的Ti O2禁带宽度为2.7 e V.通过低温EPR测试进一步证明了Ti3+的存在,而且Ti3+主要掺杂在Ti O2体相中.N2物理吸附结果表明,随焙烧温度不断提高,所得产物的比表面积先增加后减少,当焙烧温度在500 oC时,比表面积最大,但至550 oC时,比表面积、孔径和孔体积增大,表明催化剂的孔结构被破坏.表面活性剂F127的用量对样品比表面积和孔径大小也有影响,当其用量为0.54 g时,所得产物的比表面积最大.我们将所合成的Ti O2应用于污染气体NO的氧化,考察了焙烧温度和表面活性剂用量对光催化剂性能的影响.结果表明,当表面活性剂用量为0.54 g,焙烧温度为500 oC时,所制催化剂在模拟太阳光和可见光照射下都表现出最好的NO去除转化率.将使用过的催化剂离心洗涤后进行连续反应3.5 h,依然保持很高的NO去除转化率.催化剂高活性及稳定性的主要原因是Ti3+的掺杂将Ti O2光响应范围拓展到可见光区域,且Ti3+掺杂和介孔结构之间的协同作用有利于促进光生电子和空穴的分离.当催化剂在低于500 oC焙烧时,所得催化剂结晶度较低,不利于光生电子-空穴的分离,而高温焙烧则会导致催化剂介孔结构遭到破坏,不利于NO气体吸附和产物脱附.表面活性剂对催化剂活性影响较小,在可见光照射下催化剂均表现出很好的光催化活性.此外,该Ti3+自掺杂介孔Ti O2在液相条件下对有机染料亚甲基蓝也表现出很好的去除效果,可见光照射2 h,亚甲基蓝去除率接近100%.  相似文献   

4.
纳米Ag/ZnO光催化剂及其催化降解壬基酚聚氧乙烯醚性能   总被引:4,自引:0,他引:4  
采用氨浸法制备了不同Ag负载量的纳米Ag/ZnO光催化剂,并用X射线衍射、比表面积测定、X射线光电子能谱和漫反射紫外-可见光谱测定了Ag/ZnO的晶型结构、比表面积、表面组成和光谱特征.以壬基酚聚氧乙烯醚(NPE-10)为模型污染物,分别在紫外光和可见光照射下考察了纳米Ag/ZnO的光催化活性.结果表明,Ag能成功地负载到ZnO表面,且随着Ag负载量的增加,ZnO的粒径逐渐增大,比表面积逐渐减小.与纳米ZnO样品相比,Ag/ZnO中Ag 3d5/2结合能减小,而Zn 2p和O 1s结合能增大,ZnO表面的羟基氧和吸附氧含量增加.当Ag负载量大于0.5%时,Ag/ZnO样品的吸收光谱发生红移,在可见光区出现吸收.光催化降解结果表明,0.5%Ag/ZnO样品的光催化活性最高,在紫外光和可见光照射3 h后NPE-10降解率分别约为77%和56%,而ZnO样品的光催化活性仅约为61%和40%.  相似文献   

5.
半导体光催化剂TiO2因具有绿色环保无污染、化学稳定性好及可实现稳定产氢等优点而广泛应用于光解水、废水处理和空气净化等领域.然而,锐钛矿相TiO2禁带宽度约为3.2 eV,仅对紫外光响应.而在太阳光中,44%左右为可见光,紫外光仅占不到4%.为了提高TiO2对太阳光的利用率和在可见光照射下的光催化活性,近年来人们采用掺杂金属/非金属离子以及与可见光催化剂复合等方法对TiO2进行改性.但是这些离子掺杂的方法会不可避免地在TiO2晶格中形成结构缺陷,这些结构缺陷作为光生电子和空穴的复合中心不利于电子和空穴分离.最近研究表明,通过Ti3+自掺杂可以很好提高TiO2可见光催化活性,但是目前制备Ti3+掺杂TiO2的方法较复杂,形成的Ti3+掺杂易在表面积聚而被进一步氧化,影响其光催化稳定性,不利于实际应用.因此,开发具有良好电子-空穴分离效率的可见光催化剂引起了广泛的研究兴趣.本文通过原位自掺杂Ti3+来提高TiO2可见光光催化活性.以TiCl3为钛源, H2O为溶剂, F127为软模板,采用溶剂挥发诱导自组装的方法制备了蠕虫状Ti3+自掺杂的介孔TiO2.采用X射线衍射(XRD)、N2物理吸附、紫外-可见漫反射(UV-vis)、透射电子显微镜和电子顺磁共振(EPR)对所制备样品结构、结晶度和形貌等进行了表征分析.通过控制表面活性剂用量和焙烧温度优化了Ti3+自掺杂介孔TiO2的光催化活性.结果表明,在模拟太阳光照射下,所制样品对气相光催化氧化NO和水相降解有机染料亚甲基蓝表现出优异的催化性能和稳定性. Ti3+自掺杂介孔TiO2有效扩展了催化剂的光吸收范围,提高了光生电子空穴的迁移效率.其优异的光催化活性和稳定性主要归因于掺杂在TiO2骨架中的Ti3+和所合成催化剂多孔性之间的协同效果.固体UV-vis结果表明,所合成的TiO2具有很好的可见光响应,主要归因于在TiO2材料合成过程中,部分Ti3+未被完全氧化, Ti3+掺入可以有效降低TiO2的禁带宽度.通过计算可知合成的TiO2禁带宽度为2.7 eV.通过低温EPR测试进一步证明了Ti3+的存在,而且Ti3+主要掺杂在TiO2体相中. N2物理吸附结果表明,随焙烧温度不断提高,所得产物的比表面积先增加后减少,当焙烧温度在500 oC时,比表面积最大,但至550 oC时,比表面积、孔径和孔体积增大,表明催化剂的孔结构被破坏.表面活性剂F127的用量对样品比表面积和孔径大小也有影响,当其用量为0.54 g时,所得产物的比表面积最大.我们将所合成的TiO2应用于污染气体NO的氧化,考察了焙烧温度和表面活性剂用量对光催化剂性能的影响.结果表明,当表面活性剂用量为0.54 g,焙烧温度为500oC时,所制催化剂在模拟太阳光和可见光照射下都表现出最好的NO去除转化率.将使用过的催化剂离心洗涤后进行连续反应3.5 h,依然保持很高的NO去除转化率.催化剂高活性及稳定性的主要原因是Ti3+的掺杂将TiO2光响应范围拓展到可见光区域,且Ti3+掺杂和介孔结构之间的协同作用有利于促进光生电子和空穴的分离.当催化剂在低于500 oC焙烧时,所得催化剂结晶度较低,不利于光生电子-空穴的分离,而高温焙烧则会导致催化剂介孔结构遭到破坏,不利于NO气体吸附和产物脱附.表面活性剂对催化剂活性影响较小,在可见光照射下催化剂均表现出很好的光催化活性.此外,该Ti3+自掺杂介孔TiO2在液相条件下对有机染料亚甲基蓝也表现出很好的去除效果,可见光照射2 h,亚甲基蓝去除率接近100%.  相似文献   

6.
以有序介孔三氧化二铟(m-In2O3)和还原氧化石墨烯(RGO)为原料,采用紫外光照射法合成了介孔三氧化二铟/还原氧化石墨烯(m-In2O3-RGO)复合光催化剂.利用N2吸附-脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、漫反射吸收光谱(DRS)和光电流测试等手段对样品进行表征.在可见光照射下,以对氯苯酚(4-CP)为目标污染物,考察了m-In2O3-RGO光催化剂的催化性能.结果表明,m-In2O3-RGO光催化剂具有完整的晶型和规则的孔道结构,有利于光生电子和空穴的分离.同时,作为固态电子受体与传输体的RGO促进了光生电子-空穴对的传输和分离,有效提高了可见光催化性能.掺杂2%(质量分数)RGO的复合光催化剂性能最佳,4 h可将4-CP降解96%以上,催化剂经多次循环使用后,其光催化活性基本保持不变.  相似文献   

7.
ZnO-SnO2纳米复合氧化物光催化剂催化降解对硝基苯胺   总被引:12,自引:0,他引:12  
王存  王鹏  徐柏庆 《催化学报》2004,25(12):967-972
 采用共沉淀法合成了n(Zn)/n(Sn)=2的ZnO-SnO2纳米复合氧化物光催化剂,并采用X射线衍射(XRD)、紫外-可见(UV-Vis)漫反射吸收光谱、透射电子显微镜(TEM)和N2物理吸附等方法对在500~1300 ℃焙烧不同时间制得的ZnO-SnO2纳米复合氧化物的物相组成、光吸收性能、晶粒尺寸、颗粒大小、比表面积和孔体积进行了表征. 以对硝基苯胺为模型化合物,对ZnO-SnO2复合氧化物的光催化活性进行了评价,考察了催化剂焙烧温度和焙烧时间对其催化活性的影响. 结果表明,在700 ℃焙烧2 h制得的ZnO-SnO2纳米复合氧化物具有最高的光催化活性.  相似文献   

8.
介孔TiO2的水热法制备及其光催化性能   总被引:1,自引:0,他引:1  
以二钛酸钾(K2Ti2O5)经离子交换得到的无定形水合二钛酸(H2Ti2O5·xH2O)为原料, 与葡萄糖溶液在220 ℃下进行水热反应, 再在空气中520 ℃焙烧, 制备出介孔TiO2. 用扫描电子显微镜(SEM)、X射线衍射(XRD)、N2吸附、透射电子显微镜(TEM)等技术对样品进行了表征. 结果表明, 该介孔TiO2具有微米级棒状或针状形貌, 晶粒大小为12.3 nm, 比表面积为106 m2·g-1, 孔容为0.31 cm3·g-1, 孔径为8.06 nm, 焙烧处理后晶型仍是锐钛矿相. 水热生成的碳抑制了晶粒的团聚生长和晶型的转变, 提高了介孔TiO2的热稳定性. 甲基橙降解实验评价了介孔TiO2的光催化性能, 结果发现其活性与商用TiO2催化剂P25相当, 而其较大的粒径更容易回收再利用. 以碘化钾为探针反应, 表明介孔TiO2的光催化机制以光生空穴氧化为主.  相似文献   

9.
介孔TiO2的水热法制备及其光催化性能   总被引:2,自引:0,他引:2  
以二钛酸钾(K2Ti2O5)经离子交换得到的无定形水合二钛酸(H2Ti2O5·xH2O)为原料,与葡萄糖溶液在220℃下进行水热反应,再在空气中520℃焙烧,制备出介孔TiO2.用扫描电子显微镜(SEM)、X射线衍射(XRD)、N2吸附、透射电子显微镜(TEM)等技术对样品进行了表征.结果表明,该介孔TiO2具有微米级棒状或针状形貌,晶粒大小为12.3 nm,比表面积为106 m2·g-1,孔容为0.31 cm3·g-1,孔径为8.06 nm,焙烧处理后晶型仍是锐钛矿相.水热生成的碳抑制了晶粒的团聚生长和晶型的转变,提高了介孔TiO2的热稳定性.甲基橙降解实验评价了介孔TiO2的光催化性能,结果发现其活性与商用TiO2催化剂P25相当,而其较大的粒径更容易回收再利用.以碘化钾为探针反应,表明介孔TiO2的光催化机制以光生空穴氧化为主.  相似文献   

10.
光催化作为一种环境友好型、低能耗的技术,在环境净化等领域倍受关注.传统光催化剂,如TiO2,ZnO,V2O5和WO3等具有较高的光敏性,其价格低廉,自然无毒,常用于光电反应的应用当中.然而,这些催化剂具有较宽的禁带宽度,只能在紫外光下响应.为此,设计一种较窄带隙的高可见光活性的光催化剂具有一定的意义.近年来,氯氧化铋光催化剂受到了越来越多的关注,其在紫外光下具有非常优异的光催化性能.并且,研究者们已成功合成出非化学计量比的氯氧化铋,如Bi3O4Cl(2.60 eV),Bi12O17Cl2(2.10 eV),Bi12O15Cl6(2.86 eV)和Bi24O31Cl10(2.70 eV)等光催化剂.研究表明,较低的Cl/O比可能会减小催化剂的带隙宽度,并提高其光催化性能;其中Bi12O17Cl2的Cl/O比最小,是最有潜力的氯氧化铋光催化剂.然而,Bi12O17Cl2具有较高的光生电子空穴复合率,会极大的减弱其光催化活性.因此,将Bi12O17Cl2与具有高稳定性,结构相似且空穴复合率低的Bi OCl相结合,将会极大提高在可见光下Bi12O17Cl2的光催化活性.本文采用了超声水热法成功制备了具有高可见光催化活性的Bi OCl-Bi12O17Cl2纳米复合材料,用于去除染料和药物废水.扫描电子显微镜和比表面积分析仪的结果表明,纳米复合材料具有良好的分散性,结构为花瓣形状,其平均厚度为20至50 nm,且具有较高的比表面积.紫外-可见漫反射和光致发光光谱分析表明,纳米复合材料具有良好的可见光吸收性能,并且光生电子空穴复合率远低于Bi12O17Cl2.其在可见光下降解罗丹明B(/环丙沙星)的动力学常数分别约为Bi12O17Cl2,BiOCl和P25的8.14(/4.94),64.66(/11.91)和42.63(/36.07)倍.合适的形态,结构和光电性能是此纳米复合光催化剂具有优异光催化性能的原因.此外,该催化剂还显示出较宽的pH适用范围和优异的可重复利用性,有利于实际利用.机理研究表明,降解罗丹明B的主要活性物质是光生空穴和超氧自由基.总之,本文开发了一种绿色、稳定、高效的可见光光催化剂,对BiOCl基的光催化剂的研究作出了一定的贡献.  相似文献   

11.
"Mesoporous TiO2 powder and films with worm-like channels were synthesized by an evaporation-induced self-assembly approach. The as-prepared samples were calcined at different temperature to investigate the effect of calcined temperature on the mesostructure and the photocatalytic activity. Acetaldehyde photodegradation in gas phase was employed to evaluate the photocatalytic activity of mesoporous TiO2. Results showed that all the calcined powder samples exhibited higher photocatalytic activities than that of Degussa P25. The sample calcined at 400 oC, which showed higher activity than other samples, possessed a homogeneous pore diameter of about 6.0 nm and an 11.0 nm crystalline anatase pore wall, as well as large surface area of 117 m2/g. It was speculated that two factors of surface area and crystallinity affected the photocatalytic activity of mesoporous TiO2 photocatalyst. The mesoporous TiO2 films fabricated by spin-coating also had high photocatalytic activities."  相似文献   

12.
Cerium-doped mesoporous TiO2 nanoparticles with high surface area and thermal stable anatase wall were synthesized via hydrothermal process in a cetyltrimethylammonium bromide (CTAB)/Ti(SO4)2/Ce(NO3)4/H2O system. The obtained materials were characterized by XRD, FESEM, HRTEM, FTIR spectroscopy, nitrogen adsorption and DRS spectra. Experimental results indicated that the doping of cerium not only increased the surface area of mesoporous TiO2 nanoparticles, but also inhibited the mesopores collapse and the anatase-to-rutile phase transformation. Moreover, the undoped, doped anatase mesoporous nanoparticles exhibit higher photocatalytic activity than commercial photocatalyst (Degussa, P25), but the maximum photodegradation rate corresponds to the undoped mesoporous TiO2 nanoparticles. The lower photocatalytic activities of cerium-doped samples compared with undoped one may be ascribed to that the doped cerium partially blocks titania's surface sites available for the photodegradation and absorption of Rhodamine B (RB).  相似文献   

13.
采用微波辅助合成方法制备了具有高光催化活性的纳米复合材料Ag/ZnO-ZnS,经X-射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜配合X-射线能量色散谱仪(SEM-EDS)以及氮气吸附-脱附测定等对合成材料的结构、形貌和表面物理化学性质进行了表征。结果表明,经微波处理后的纳米复合材料Ag/ZnO-ZnS中Ag以单质形式存在,具有纤锌矿晶型结构,属介孔材料,平均孔径约为4.1nm,比表面积更大,颗粒分布更加均匀。通过模型分子若丹明B分别考察了紫外和微波辐射下Ag/ZnO-ZnS的光催化活性,结果显示,微波辅助合成的Ag/ZnO-ZnS具有更高的光催化活性,其在微波增强光催化条件下,40min内对若丹明B脱色率达99%以上,明显高于市售P25等其他体系。  相似文献   

14.
当用能量大于其禁带宽度的光照射通有氧气的TiO2悬浮液时,在TiO2微粒表面会产生反应活性很高的空穴和O2-、H2O2等多种活性氧.在上一篇文章中[1]我们已报道了在通氧气和紫外光照的条件下,向TiO2悬浮液中加入少量Ag+或Pd2+,将会大幅度提高体系中H2O2的生成量.另外,蔡汝雄等人也曾通过向TiO2悬浮液中加入SOD的方法来提高其中H2O2的生成量[2],而且证明了H2O2生成量的增多有助于杀死子宫癌细胞[3].另一方面,利用TiO2光催化来分解处理工业废水中的有机物已多见报道[4~7].因此,为考察H2O2含量的增加是否有助于TiO2催化分解有机物,我们以CH3CHO为氧化对象,测定了经Ag和Pd表面修饰以及直接向悬浮体系添加Ag+或Pd2+离子前后,TiO2光催化氧化分解CH3CHO效率的变化,并对氮气和氧气气氛的实验结果进行了测定和比较.  相似文献   

15.
以Na3VO4.12H2O,AgNO3和Y(NO3)3.6H2O为原料,采用浸渍法制备了Y2O3/Ag3VO4复合可见光催化剂,并用XRD,SEM,XPS,UV-Vis等测试手段表征了试样的结构和性能。结果显示,Y2 O3/Ag3VO4复合可见光催化剂为单斜结构,Y以Y2 O3的形式分散在Ag3VO4晶体的表面。UV-Vis测试结果表明,Y2O3/Ag3VO4较纯Ag3VO4吸收带边发生了红移,在可见光区的吸收增强;以金属卤灯(波长大于400 nm)为光源,研究了Y2O3/Ag3VO4催化剂对甲基橙(MO)的可见光催化降解性能。结果发现,Y2O3/Ag3VO4复合可见光催化剂的光催化活性较纯Ag3VO4均有大幅提高,其中Y掺杂量为4%时活性最高。  相似文献   

16.
以P123为模板,以钛酸四正丁酯、硝酸银和硫脲为原料采用模板法制备了一系列硫和银共掺杂介孔TiO2光催化材料。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、BET和紫外-可见光谱(UV-Vis)等技术对其形貌、晶体结构及表面结构、光吸收特性等进行了表征。以甲基橙溶液的光催化降解为模型反应, 考察了不同掺杂量的样品在紫外和可见光下的光催化性能。结果表明:用模板法制备的共掺杂介孔TiO2光催化材料在紫外和可见光条件下较纯介孔TiO2和单掺杂介孔TiO2对甲基橙溶液具有更好的光催化降解效果, 且硫和银的掺杂量及样品焙烧温度显著影响该材料的催化性能。当硫掺杂量为2%(mol)和银掺杂量为1%(mol),在500℃焙烧2 h所得光催化材料的催化性能最佳, 4 h即可使甲基橙的降解率达98.8%,重复使用4次仍可使甲基橙的降解率保持在87.5%以上。因此, 以该模板合成法, 通过硫和银的共掺杂有望使TiO2成为一种低或无能耗、高活性的绿色环保型催化材料。  相似文献   

17.
Ag2O是优良的感光材料,很少作为光催化材料,而常被用作光催化材料的共催化剂.此外,由于Ag2O禁带宽度窄,且可有效吸收近红外光,因而不能用于全太阳光谱的光催化应用中.同时很少被用作NIR催化剂.本文中不仅研究了纳米Ag2O颗粒的UV-Vis光催化性能,而且还系统探究了其NIR光催化活性.由于在紫外线和可见光的照射下,Ag2O纳米颗粒易发生光还原失活,因而对Ag2O表面硫化处理,使其表面上生长Ag2S2O7层以形成Ag2S2O7/Ag2O异质结,探究了该异质结UV-Vis光催化活性及其光催化循环稳定性;同时,考察了其近红外光催化及其重复使用性能.利用沉淀法成功制备了Ag2O纳米颗粒,并通过在其表面部分硫化处理得到Ag2S2O7,成功构筑Ag2S2O7/Ag2O异质结构,并研究了该Ag2S2O7/Ag2O异质结构UV-Vis-NIR光催化降解有机污染物性能.研究表明,Ag2O纳米颗粒在光子能量较低的NIR照射条件下具有较强的光催化活性,但UV-Vis照射下,虽然Ag2O具有光催化活性,但易发生光还原生成单质银,降低其光催化稳定性;Ag2S2O7/Ag2O纳米异质结,虽然在UV-Vis-NIR范围内光催化活性略降于Ag2O,但稳定性显著提高,总体来看,Ag2S2O7/Ag2O异质结构在全光谱催化方面更具优势.这主要是由于Ag2O表面部分硫化得到的Ag2S2O7纳米颗粒,且二者之间能带匹配促进了光生载流子分离,同时Ag2O表面的Ag2S2O7颗粒直接吸收能量较高的UV-Vis,进而保护内部Ag2O,抑制了其自身还原,可显著提高Ag2S2O7/Ag2O异质结在UV-Vis-NIR催化活性及稳定性.实验结果分析表明,Ag2S2O7/Ag2O异质结纳米颗粒在UV-Vis-NIR条件下均具有稳定且高效的光催化活性,其主要原因为:(1)具有窄带隙的Ag2O可有效拓宽该异质结的光谱吸收;(2)Ag2S2O7/Ag2O异质结能带匹配可有效促使光生载流子分离;(3)Ag2O颗粒表面的Ag2S2O7纳米颗粒可有效提高Ag2S2O7/Ag2O异质结纳米颗粒的光化学稳定性,尤其是在UV-Vis条件下的化学稳定性.Ag2O纳米颗粒受到光照(UV-Vis-NIR)激发后产生电子-空穴对,由于Ag2S2O7与Ag2O能带位置的匹配,Ag2O导带的光生电子注入Ag2S2O7的导带;而Ag2S2O7价带的光生空穴注入Ag2O的价带.Ag2O表面的Ag2S2O7颗粒可有效捕捉电子,从而阻止Ag2O产生的电子-空穴对复合,进而提高光催化活性;同时当光子能量较高(UV以及部分短波长的Vis)时,Ag2O表面的Ag2S2O7颗粒直接吸收该部分光能,进而保护内部Ag2O发生自身还原,因此,Ag2S2O7/Ag2O异质结纳米颗粒在UV,Vis及NIR条件下均具有稳定且高效的光催化活性,在高效利用全光谱光催化降解有机污染物方面具有较大的潜力.  相似文献   

18.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

19.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

20.
以乙醇为溶剂, 钛酸四丁酯为前驱体, 用溶剂热法制备了Ag表面修饰的负载型纳米二氧化钛光催化剂. 利用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱等技术对其进行了系统的表征, 以亚甲基蓝(MB)溶液的脱色降解为模型反应, 考察了不同Ag含量样品的光催化性能. 结果表明: 用溶剂热法制备的样品中TiO2皆为锐钛矿相, 金属Ag颗粒沉积在TiO2表面, 粒径为2 nm左右, 比表面积较溶胶凝胶法制备的样品大大增加, 最高可达151.44 m2·g-1; UV-Vis光谱和光催化实验表明: Ag修饰使TiO2对光的吸收能力大大增强, 吸收带边红移至可见光区, 亚甲基蓝在该复合材料上的光催化降解反应遵循一级反应动力学模型; 溶剂热法制备样品的光催化性能明显好于溶胶凝胶法制备的样品, 在紫外光和可见光下, Ag摩尔分数为5%的样品表现出最佳的光催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号