首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
石墨相氮化碳(g-C_3N_4)是一种在室温条件下最稳定的氮化碳.同时g-C_3N_4的带隙为2.7 eV,可以利用可见光催化很多反应,例如光解水、CO2还原、有机污染物降解和有机物合成.但普通体相g-C_3N_4的光催化性能不尽如人意,主要是由于普通体相材料的载流子复合效率高,可见光(450 nm)利用率低且比表面积小.众所周知,半导体的光催化性能与材料表面状态密切相关,因此可以控制合成条件来制备有利于光催化形貌的g-C_3N_4材料.普通体相g-C_3N_4材料的比表面积较小,约为10 m2/g,导致传质作用较差,光生电子-空穴复合严重,因此制备高比表面积的g-C_3N_4材料是目前研究的热点.我们发现在550 oC下将三聚氰胺和三聚氰酸一起煅烧可以一步热合成g-C_3N_4纳米片,合成温度较低,对材料带隙影响小,同时可以提高材料比表面积,从而极大地提高了材料的光降解苯酚性能.XRD测试发现,随着前驱体中三聚氰酸比例增加,材料的主峰从27.38°显著偏移到27.72°.这表明三嗪环面内相连构成CN平面,同时CN层也会有堆叠最终形成g-C_3N_4材料.通过BET测试,g-C_3N_4纳米片的比表面积为103.24 m2/g.采用AFM分析得到g-C_3N_4纳米片的厚度为3.07 nm.研究了该g-C_3N_4纳米片的光降解性能,结果显示,在可见光照射30 min后,使用这种g-C_3N_4纳米片作为催化剂的条件下,苯酚降解率达到最优的81%.在5次循环利用后,g-C_3N_4(1:9)的降解率还能保持在80%以上,说明材料有良好的循环稳定性.这主要得益于材料的纳米片结构,在对苯酚吸附时不会有很复杂的吸附与脱附过程.同时纳米片结构可为有机污染物的吸附和原位降解提供传质通道.光反应体系中的产物由HPLC检测,分析苯酚的降解产物及产物的产量可以大致推测苯酚可能的降解历程.在三聚氰酸作用下,CN聚合层弯曲,减少了CN层之间的相互结合,同时不会对材料的带隙产生影响.同时整个合成过程无需引发剂,也不会导致CN层的基本单元和连接方式发生改变,同时由于二维片层结构,提高了材料的电荷分离效率.通过苯酚的降解实验得知三聚氰胺与三聚氰酸的比例为1:9,在550 oC下煅烧得到的g-C_3N_4纳米片的光降解性能最优,同时具有很好的催化稳定性  相似文献   

2.
近年来, 石墨型氮化碳(g-C3N4)作为一种n型半导体光催化剂材料, 由于具有较好的热稳定性和化学稳定性, 同时具有可调的带隙结构和优异的表面性质而备受人们关注. 然而, 传统的g-C3N4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷, 制约着其光催化活性的进一步提高. 因此, 人们开发了多种技术对块体状g-C3N4材料进行改性,其中构建基于g-C3N4纳米薄片的异质结复合光催化材料被认为是强化g-C3N4载流子分离效率, 进而提高其可见光催化活性的重要手段. BiOI作为一种窄带隙的p型半导体光催化剂, 具有强的可见光吸收能力和较高的光催化活性, 同时它与g-C3N4纳米薄片具有能级匹配的带隙结构. 因此, 基于以上两种半导体材料的特性, 构建新型的BiOI/g-C3N4纳米片复合光催化剂材料不仅能够有效提高g-C3N4的可见光利用率, 而且还可以在n型g-C3N4和p型BiOI界面间形成内建电场, 极大促进光生电子-空穴对的分离与迁移效率.为此, 本文通过简单的一步溶剂热法在g-C3N4纳米薄片表面原位生长BiOI纳米片材料, 成功制备了新型的BiOI/g-C3N4纳米片复合光催化剂. 利用X射线衍射仪(XRD), 场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试. XRD, SEM和TEM结果显示, 结晶完好的BiOI呈小片状均匀分散在g-C3N4纳米薄片表面; 紫外漫反射光谱表明, 纳米片复合材料的吸光性能较g-C3N4薄片有显著提升; 瞬态光电流测试证明, 复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中, BiOI/g-C3N4纳米片复合光催化剂显示出了优异的催化活性和稳定性, 其光降解活性分别为纯BiOI和g-C3N4的34.89和1.72倍; 自由基捕获实验发现, 反应过程中的主要活性物种为超氧自由基(·O2-), 即光生电子主导整个降解反应的发生. 由此可见, 强的可见光吸收能力和g-C3N4与BiOI界面处形成的内建电场协同促进了g-C3N4纳米薄片的电荷分离, 进而显著提高了该复合材料的可见光催化降解活性. 此外, 本文初步验证了在BiOI/g-C3N4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的, 而非"Z型转移"机制.  相似文献   

3.
作为一种新型水中有机污染物,有机氟化物中C–F共价键的键能较大,因而很难通过传统的可见光光催化剂降解.因此,开发高效可见光光催化剂是实现在可见光照射下成功降解水中有机氟化物的关键.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C3N4)因具有可见光响应、环境友好及低成本等优点而广泛应用于水中有机污染物去除.然而,体相层状结构严重限制了g-C3N4的可见光活性.这是由于体相层状结构不利于光生电子的表面迁移,同时增加了光催化反应过程的传质阻力.为了开发一种可重复使用且具有优异可见光活性的光催化剂,进而实现在可见光照射下水中有机氟化物的高效降解及矿化,本文以氯铂酸和多孔氮化碳(pg-C3N4)为前驱体,运用简单的原位光还原法成功制备出一系列高分散铂沉积多孔氮化碳复合材料(Pt/pg-C3N4),而pg-C3N4则是以三聚氰胺为原料采用前驱体预处理法制备.与传统铂沉积石墨相氮化碳(Pt/g-C3N4)复合材料相比,由于多孔氮化碳前驱体具有暴露的几何内外表面,铂纳米粒子可高度分散于其上.因此,铂纳米粒子的电子捕获效应显著增强.另外,与其他传统还原法相比,原位光还原技术还可有效抑制铂纳米粒子的自凝聚.我们对制备的Pt/pg-C3N4复合材料的形貌、孔隙率、相结构、化学组成及光电性质进行了详细表征.结果显示,与传统Pt/g-C3N4复合材料相比,由于多孔微观结构的构建以及高度分散铂纳米粒子的沉积,制备的Pt/pg-C3N4复合材料的BET比表面积显著增大,光吸收能力明显增强,光催化量子效率显著提高.在可见光条件下,初步评价了该复合材料光催化降解水中偶氮染料甲基橙的活性,然后将其进一步应用于水中4-氟苯酚的降解及矿化.结果表明,由于多孔微观结构的构建以及高度分散铂纳米粒子的沉积,所制备Pt/pg-C3N4复合材料具有相当高的可见光光催化活性.结果还显示,所制复合材料具有很高的稳定性,连续使用4次均保持相似的活性.作为一种可见光催化剂,所制Pt/pg-C3N4复合材料有望广泛应用于水中持久性有机污染物的降解以及光催化劈裂水产氢、NO分解和CO2还原等领域.  相似文献   

4.
作为温室效应的主要气体CO2浓度持续上升,已经成为全球环境问题.将CO2光催化还原成可再生能源不仅可以解决CO2带来的温室效应,而且可以将太阳能转化为燃料物质而取代传统意义上的化石能源.实际上光催化的研究可以追溯到1979年,自从Inoue首次报道了光催化CO2和水制取甲酸、甲烷等有机物,人们一直在努力开发高效的CO2转化光催化剂.近年来,随着光催化技术的快速稳定发展,各种半导体光催化剂,如Zn2Ge O4,CdS,Fe3O4,g-C3N4和SrTiO3等,已被开发用于光催化还原二氧化碳.在这些半导体中,有的材料具有较大的带隙导致较低的可见光活性,有的材料具有毒性引起额外的环境问题.因此,寻求具有适度带隙且环境友好的半导体材料是解决全球变暖问题的关键.近年来,g-C3N4因其带隙(约2.7e V)较窄,具有一定的可见光吸收性能,无污染,以及化学和热稳定性良好等特点,被视为理想的可见光响应光催化材料之一.但是,g-C3N4光吸收有限、光生电子空穴复合率较高等缺点严重限制了其光催化活性.为了进一步提高g-C3N4的CO2可见光催化还原活性,国内外研究者开发了许多方法来提高电荷分离效率,进而提高g-C3N4光催化剂的总体活性.在这些策略中,将g-C3N4与具有合适导带位置的其他材料偶联以促进电子空穴分离是提高光催化性能的有效方法之一.由于Co-MOF具有较窄的带隙且导带位置与g-C3N4匹配,我们选择Co-MOF与g-C3N4复合来克服g-C3N4的缺点,进而达到提高其光催化活性的目的.作为电子供体的Co-MOF能够将最低未占分子轨道(LUMO)上的光生电子转移到g-C3N4的导带以促进电荷分离,同时水被g-C3N4价带上的空穴氧化,最终生成氧气,从而提高光催化还原CO2的性能.制备的Co-MOF/g-C3N4纳米复合材料在可见光照射下具有优异的光催化还原CO2性能,约为纯g-C3N4的光催化活性的2倍.一系列分析表明,Co-MOF的引入不仅拓宽了可见光的吸收范围,而且促进了电荷分离,有利于提高g-C3N4的光催化活性.特别是在590nm单波长照射下进行的羟基自由基实验进一步证明了Co-MOF的LUMO上的光生电子可以转移到g-C3N4.该研究结果为基于g-C3N4的光催化体系的合理构建提供了新思路.  相似文献   

5.
以单分散SiO2为模板,通过简单的一步煅烧法制备具有分级孔结构的g-C3N4。与体相g-C3N4相比,分级孔结构的g-C3N4不仅可见光吸收性能和比表面积得到提高,而且更有利于光生电子-空穴的分离。此外,具有分级孔结构的g-C3N4具有明显增强的可见光驱动的光催化产氢活性,当SiO2和二氰二胺质量比为1∶1时,制备所得g-C3N4(C3N4-2)产氢速率几乎是体相g-C3N4的18倍。  相似文献   

6.
g-C3N4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C3N4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C3N4光催化性能较低,其原因可归纳为:(1)g-C3N4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C3N4的量子效率较低;(2)材料在合成过程中易于结块,使g-C3N4的比表面积远小于理论值,严重削弱了g-C3N4光催化材料的制氢性能.目前已有很多关于g-C3N4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C3N4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C3N4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C3N4表面均匀分布的含氧官能团等和Ni2+结合,再原位与S2?反应,从而在g-C3N4上负载耦合紧密的NiS2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS2/g-C3N4光催化剂.NiS2助剂在温和的反应条件下与g-C3N4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C3N4;(2)添加Ni(NO3)2前驱体后,Ni2+离子由于静电作用紧密吸附在g-C3N4表面;(3)在80oC加入硫代乙酰胺(TAA),可在g-C3N4的表面紧密和均匀形成助剂NiS2.表征结果证实成功制备NiS2纳米粒子修饰的g-C3N4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h?1 g?1),明显高于纯g-C3N4.此外,对NiS2/g-C3N4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS2促进了物质表面快速转移光生电子,使g-C3N4光生电荷有效分离.基于NiS2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

7.
石墨相氮化碳(g-C3N4)具有较高的催化活性、良好的生物相容性、廉价易得、低毒性等特点,因而受到了广泛的关注.g-C3N4的禁带宽度为2.7 eV,可被可见光激发,相对于二氧化钛和氧化锌,它对可见光具有更高的太阳光利用率.尽管理论上g-C3N4是类似于石墨烯结构的二维材料,但通常情况下g-C3N4却是层层堆积起来的三维体相结构.从而导致了其比表面积降低,催化反应过程中与反应物接触面积小.同时又使光照下生成的载流子不能迅速传递到材料表面参与反应,大大降低了g-C3N4光生载流子的分离和传递效率.另外,作为一种可见光催化剂,g-C3N4的禁带宽度比一般的无机半导体光催化剂窄,仅能够吸收部分可见光.本文利用原位煅烧法制备了g-C3N4/rGO复合光催化剂,以罗丹明B和2,4-二氯酚为目标探针分子,考察了其可见光催化活性.这对于设计开发其他具有共轭大π键的光催化体系,具有一定的借鉴意义.X射线衍射(XRD),傅里叶变换红外光谱(FTIR),X射线光电子能谱(XPS)和激光共聚焦拉曼光谱(Raman)结果表明,氧化石墨烯成功地被还原为石墨烯,并成功地引入到了g-C3N4中去.在三聚氰胺聚合的过程中,石墨烯被夹杂在氮化碳的片层中间,有利于形成π-π共轭作用.复合光催化剂C3N4/rGO的带边发生明显的红移,在可见光区域内的吸收强度也有所增加,因而有利于其可见光催化活性的提高.通过外推法算得g-C3N4和C3N4/rGO-1复合光催化剂的带隙宽度分别为2.70和2.42 eV.为了更好地考察复合光催化剂C3N4/rGO的能带结构的变化,通过光电化学的手段对其进行进一步的研究.莫特-肖特基结果表明该半导体是n型.计算得出g-C3N4和C3N4/rGO复合光催化剂的平带电势分别为–1.12和–0.85 V对甘汞标准电极,C3N4/rGO复合光催化剂的平带电位发生明显的正移.由此分别确定g-C3N4和C3N4/rGO复合光催化剂的价带底则位于1.58和1.74 V对甘汞标准电极.相比g-C3N4,g-C3N4/rGO复合光催化剂的价带位置的降低意味着其具有更强光氧化的能力,且比表面积的增大也有利于光催化反应.结果发现,石墨烯与g-C3N4的比例为1%时,复合样品的光催化性能最佳,对罗丹明B和2,4-二氯酚的降解性能均有提高.  相似文献   

8.
崔言娟  王愉雄  王浩  曹福  陈芳艳 《催化学报》2016,(11):1899-1906
二维层状半导体材料与其体相堆积结构相比表现出独特的性质,有望在纳米材料科学领域取得新的突破.基于对太阳能利用的研究,二维半导体光催化材料引起了研究者的广泛关注.诸多半导体材料已被设计合成二维纳米片结构应用于光催化领域,如 MoS2, WS2, SnS2和TiO2等.石墨相氮化碳(g-C3N4)是一种典型的非金属二维聚合物半导体.二维层状结构的组成使得 g-C3N4纳米片能够表现出优异的光电性质.然而,其合成目前仍然存在很大困难.目前已报道的单层或多层 g-C3N4的制备主要有超声辅助溶剂剥离法、热处理法、插层法和电化学合成法等.但这些方法存在合成复杂和引入结构缺陷等不足.另外,在体相组成中插入孔结构也能够提高 g-C3N4的光催化活性.目前常用的方法主要是模板法.然而,在这些生孔过程中往往引起聚合度降低,增加长程无序度,不利于光生载流子的传输.因此,如果将多孔结构引入 g-C3N4纳米片,同时提高其聚合度结构,将在很大程度上提高其光催化性能.本文利用直接氨气热聚合的方法,将硫氰酸铵进行高温热处理,一步法合成出较高聚合度的多孔 g-C3N4纳米片,在可见光照射下表现出较高的产氢活性和稳定性.采用 X射线衍射(XRD)、红外光谱(FTIR)、荧光光谱(PL)和电子顺磁共振(EPR)等方法对多孔 g-C3N4纳米片结构进行了详细表征.在助催化剂 Pt存在下,采用可见光照射(>420 nm)分解水产氢的方法评价了其光催化性能.结果表明,热处理温度对产物结构及性能具有较大影响. XRD结果表明,在450oC热处理,硫氰酸铵未完全聚合,与前期氮气热处理的结论不同.当热聚合温度上升至500oC,石墨相结构形成.至600oC时,石墨相的层间距缩小,且聚合度没有明显下降.这表明氨气气氛抑制了原料分解,提高了分解聚合温度,同时增加了产物的聚合度. FTIR结果表明,热聚合温度对产物 C–N共轭结构改变不大,但在810 cm–1处的峰位向长波数移动,表明七嗪环单元含量增加,再次证明高的热聚合温度没有造成明显的结构分解,反而促进了聚合结构的形成.扫描电镜与氮气吸脱附分析表明,随着聚合温度升高,产物粒子尺寸变小,形貌呈现层状分布,并伴随多孔状的产生,因此比表面积和孔体积显著增大,吸收带边发生蓝移. PL和 EPR结果表明,聚合温度从500增至600oC,样品光生载流子的复合速率下降,导带离域电子密度增加,从而有利于光催化性能的提高.光解水产氢性能测试表明,聚合温度升高有利于催化剂产氢速率提高;600oC所得样品的产氢速率达340μmol/h.进一步分析表明,产氢速率与比表面积基本成正相关关系,说明层状多孔结构的形成是影响产氢性能的重要因素.经过多轮循环测试,其产氢性能保持稳定而没有显著下降,表明其活性稳定性良好.  相似文献   

9.
石墨型氮化碳(g-C3N4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注.目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力.然而,g-C3N4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高.针对以上问题,人们对g-C3N4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C3N4异质结复合体是常用的有效改善g-C3N4光生电荷分离进而提高其光催化活性的手段.但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善.本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO2/Fe2O3,ZnO/BiVO4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性.这样,通过构建磷氧桥有望改善TiO2和g-C3N4的紧密连接,以促进光生电子由g-C3N4向TiO2的迁移、改善光生载流子的分离,进而更加显著地提高g-C3N4的光催化活性.但是相关工作至今尚未见到报道.为此,本文通过简单的湿化学法成功地合成了磷氧(P–O)桥连的TiO2/g-C3N4纳米复合体,并研究了P–O功能桥对TiO2/g-C3N4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响.结果表明,g-C3N4与适量的纳米TiO2复合,尤其是g-C3N4与适量P–O桥连TiO2的复合可进一步提高g-C3N4的光催化活性.基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C3N4的光生电子由g-C3N4向TiO2转移,极大地促进了g-C3N4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C3N4的3倍.此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.  相似文献   

10.
随着科学技术的不断进步和经济的快速发展,人类对自然资源的需求量越来越大,在开发利用自然资源的同时,大量的有机污染物也随之进入自然环境.这些物质不仅污染环境、破坏生态,更对人类的生活和健康带来了巨大的威胁.研究证实,半导体光催化剂在光照条件下可以破坏有机污染物的分子结构,最终将其氧化降解成CO2、H2O或其它不会对环境产生二次污染的小分子,从而净化水质.近年来,有关光催化降解有机污染物的报道日益增多. ZnO作为一种广泛研究的光催化降解材料,因其无毒、低成本和高效等特点而具有一定的应用前景.但是ZnO较大的禁带宽度(3.24 eV)导致其只能吸收紫外光部分,而对可见光的吸收效率很小,极大地制约了其实际应用.除此之外, ZnO受光激发产生的电子-空穴分离效率较低、光催化过程中的光腐蚀严重也是制约其实际应用的重要因素.为了提高ZnO的光催化活性和稳定性,本文合成了用g-C3N4修饰的氧空位型ZnO(g-C3N4/Vo-ZnO)复合催化剂,在有效调控ZnO半导体能带结构的同时,通过负载一定量的g-C3N4以降低光生电子-空穴对的复合速率和反应过程中ZnO的光腐蚀,增强催化剂的光催化活性和稳定性.本文首先合成前驱体Zn(OH)F,然后焙烧三聚氰胺和Zn(OH)F的混合物得到g-C3N4/Vo-ZnO复合催化剂,并采用电子顺磁共振波谱(EPR)、紫外-可见光谱(UV-vis)、高分辨透射电镜(HRTEM)和傅里叶变换红外光谱(FT-IR)等表征了它们的结构及其性质. EPR结果表明,ZnO焙烧后具有一定浓度的氧空位,导致其禁带宽度由3.24 eV降至3.09 eV,因而提高了ZnO对可见光的吸收效率. UV-vis结果显示, Vo-ZnO复合g-C3N4后对可见光的吸收显著增强. HRTEM和FT-IR结果均表明, g-C3N4纳米片和Vo-ZnO颗粒之间通过共价键形成了强耦合,这对g-C3N4/Vo-ZnO复合催化剂中光生载流子的传送和光生电子-空穴对的有效分离起到重要作用.可见光催化降解甲基橙(MO)和腐殖酸(HA)的实验进一步证明, g-C3N4/Vo-ZnO复合材料具有较好的光催化活性,优于单一的g-C3N4或Vo-ZnO材料.同时还发现, g-C3N4的负载量对光催化活性有显著影响,当氮化碳的负载量为1 wt%时,所制材料具有最高的光催化活性:可见光照射60 min后,MO降解率可达到93%, HA降解率为80%.复合材料光催化活性的增强一方面是因为氧空位的形成减小了ZnO的禁带宽度,使得ZnO对可见光的吸收能力大大增强;另一方面, g-C3N4和Vo-ZnO的能带符合了Z型催化机理所需的有效能带匹配,使得光生电子-空穴对得到了有效的分离,从而提高了光催化活性.降解MO的循环实验表明, g-C3N4/Vo-ZnO催化剂具有很好的稳定性且不容易发生光腐蚀.与此同时,我们对比了用不同方法制备的g-C3N4/ZnO材料的催化性能.结果显示,本文制备的g-C3N4/Vo-ZnO复合材料具有更好的降解效率.总体而言,对于降解有机污染物, g-C3N4/Vo-ZnO可能是一个更为有效可行的催化体系.此外,本文也为设计与制备其他新型光催化剂提供了一条新的思路.  相似文献   

11.
杨秋实  胡少年  姚雅萱  林先刚  杜海威  袁玉鹏 《催化学报》2021,42(1):217-224,后插44
石墨相氮化碳是一类非金属聚合物,其光催化特性,特别是在光催化水分解反应中的应用引起了广泛关注.目前,块体石墨相氮化碳的光催化性能主要受比表面积较大、光子利用率较低等因素的制约.前期大量研究主要采用异质元素掺杂、负载助催化剂、设计缺陷、构建异质结构等策略来进一步提升光催化性能.石墨相氮化碳具有二维层状的晶体结构,理论上其形貌和显微结构会对光催化性能有显著影响.因此,本文从调节材料本征结构这一角度,报道了一种调控石墨相氮化碳层间距的方法.将三聚氰胺和氯化铵混合后,通过微波快速加热,利用氯化铵分解过程中释放氨气这一特性,破坏石墨相氮化碳层间的范德华力,增大其层间距并成功获得了薄片状结构.同时,微波加热可以实现快速升温,有效避免了电炉加热煅烧时间较长导致前驱体挥发的问题.采用扫描电子显微镜、氮气等温吸脱附曲线、X射线衍射、红外光谱、紫外-可见吸收光谱、荧光光谱、光催化制氢和电化学测试等表征手段,研究了不同氯化铵含量对石墨相氮化碳层间距的作用以及调控层间距对光催化活性的影响.通过扫描电子显微镜观察,与三聚氰胺加热所得到的块状结构相比,适量的氯化铵(氯化铵质量比为11%)和三聚氰胺在微波快速加热处理后可以获得薄片状结构.氮气等温吸脱附曲线进一步证实了显微结构的变化,薄片状结构和块体结构相比BET比表面积提升了2.1倍.X射线衍射分析证实随着氯化铵含量的增加,(002)衍射峰位置左移,意味着层间距逐渐增大.红外光谱则没有明显的变化,说明氯化铵和三聚氰胺共烧并不会改变石墨相氮化碳的化学结构.光催化制氢测试发现,添加适量的氯化铵和三聚氰胺共烧可以明显提升光催化制氢性能.与块体材料(4.67μmol h?1)相比,层间距增大后光催化活性提升了约5倍(23.6μmol h?1).结合紫外-可见吸收光谱和电化学莫特肖特基测试,我们发现层间距增大后可以显著提升石墨相氮化碳的可见光吸收性质,减小带宽,并获得更为合适的能级结构.且样品的导电性能得到改善,有利于电荷传输,光生电子空穴对的分离效率进一步提升.以上结果说明调控石墨相氮化碳的层间距是一种简单有效提升催化剂光催化性能的手段.  相似文献   

12.
杨秋实  胡少年  姚雅萱  林先刚  杜海威  袁玉鹏 《催化学报》2021,42(1):217-224,后插44
石墨相氮化碳是一类非金属聚合物,其光催化特性,特别是在光催化水分解反应中的应用引起了广泛关注.目前,块体石墨相氮化碳的光催化性能主要受比表面积较大、光子利用率较低等因素的制约.前期大量研究主要采用异质元素掺杂、负载助催化剂、设计缺陷、构建异质结构等策略来进一步提升光催化性能.石墨相氮化碳具有二维层状的晶体结构,理论上其形貌和显微结构会对光催化性能有显著影响.因此,本文从调节材料本征结构这一角度,报道了一种调控石墨相氮化碳层间距的方法.将三聚氰胺和氯化铵混合后,通过微波快速加热,利用氯化铵分解过程中释放氨气这一特性,破坏石墨相氮化碳层间的范德华力,增大其层间距并成功获得了薄片状结构.同时,微波加热可以实现快速升温,有效避免了电炉加热煅烧时间较长导致前驱体挥发的问题.采用扫描电子显微镜、氮气等温吸脱附曲线、X射线衍射、红外光谱、紫外-可见吸收光谱、荧光光谱、光催化制氢和电化学测试等表征手段,研究了不同氯化铵含量对石墨相氮化碳层间距的作用以及调控层间距对光催化活性的影响.通过扫描电子显微镜观察,与三聚氰胺加热所得到的块状结构相比,适量的氯化铵(氯化铵质量比为11%)和三聚氰胺在微波快速加热处理后可以获得薄片状结构.氮气等温吸脱附曲线进一步证实了显微结构的变化,薄片状结构和块体结构相比BET比表面积提升了2.1倍.X射线衍射分析证实随着氯化铵含量的增加,(002)衍射峰位置左移,意味着层间距逐渐增大.红外光谱则没有明显的变化,说明氯化铵和三聚氰胺共烧并不会改变石墨相氮化碳的化学结构.光催化制氢测试发现,添加适量的氯化铵和三聚氰胺共烧可以明显提升光催化制氢性能.与块体材料(4.67μmol h?1)相比,层间距增大后光催化活性提升了约5倍(23.6μmol h?1).结合紫外-可见吸收光谱和电化学莫特肖特基测试,我们发现层间距增大后可以显著提升石墨相氮化碳的可见光吸收性质,减小带宽,并获得更为合适的能级结构.且样品的导电性能得到改善,有利于电荷传输,光生电子空穴对的分离效率进一步提升.以上结果说明调控石墨相氮化碳的层间距是一种简单有效提升催化剂光催化性能的手段.  相似文献   

13.
李俊怡  梁峰  田亮  张海军 《化学通报》2018,81(5):387-393
作为一种sp2共轭体系的非金属聚合物半导体,g-C3N4纳米片在光电化学、催化、光催化及生物医药等领域具有广泛的应用前景。本文综述了g-C3N4纳米片的制备方法,总结了各种不同方法制备g-C3N4纳米片的的优缺点,并对g-C3N4纳米片的发展进行了展望。  相似文献   

14.
陈峰  杨慧  罗玮  王苹  余火根 《催化学报》2017,(12):1990-1998
作为一种无金属的新型半导体材料,g-C_3N_4因具有稳定的物理化学性质及合适的能带结构而引起人们的关注.理论上g-C_3N_4完全满足水分解的电势条件.然而研究发现,g-C_3N_4材料本身的光催化性能并不好,这主要是由于半导体材料被光激发后生成的自由电子和空穴还没来得及到达材料表面参与反应,就在材料体相内发生复合,导致电子参与有效光催化制氢反应的几率大大降低.同时还发现,将少量的贵金属,如Pt,Au,Pd作助催化剂修饰在该半导体表面,其光催化性能明显提高.但由于这些贵金属储量非常稀少,价格昂贵,导致它们的使用受到一定限制.而Ag作为一种价格远低于Pt,Au,Pd的贵金属,也得到了广泛的研究.研究表明,金属Ag储存电子的能力很好,因此可以有效地将半导体上生成的光生电子快速转移到Ag上面去,从而达到电子空穴快速分离的目的.但是在光催化制氢过程中,Ag吸附H~+的能力较弱,致使电子与H~+反应的诱导力较弱,使得Ag释放电子的能力较差.因此可以通过提高Ag表面对H~+的吸附强度,以加速Ag的电子释放,通过表面修饰来提高Ag助剂的光催化活性.研究发现,Ag纳米粒子表面与含硫化合物之间存在很强的亲和力.硫氰根离子(SCN~–)具有很强的电负性,容易吸附溶液中H~+离子,并且也易吸附在Ag纳米粒子的表面.因此可以利用Ag与SCN~–的作用来增强Ag释放电子的能力.本文采用光还原法将Ag沉积在g-C_3N_4半导体材料表面,然后通过在制氢牺牲剂中加入KSCN溶液,利用SCN~-与Ag的亲和力来提高光生电子参与光催化反应的效率.结果表明,在SCN~-存在的情况下,g-C_3N_4/Ag的光催化制氢性能显著提高.当制氢溶液中SCN~–浓度为0.3 mmol L~(–1)时,材料的光催化制氢性能达最大,为3.89μmol h~(–1),比g-C_3N_4/Ag性能提高5.5倍.基于少量的SCN~–就能明显提高g-C_3N_4/Ag材料的光催化性能,我们提出了一个可能性的作用机理:金属银和SCN~-协同作用,即银纳米粒子作为光生电子的捕获和传输的一种有效的电子传递介质,而选择性吸附在银表面的SCN~-作为界面活性位点有效地吸附溶液中的质子以促进产氢反应,二者协同作用,加速了g-C_3N_4-Ag–SCN~-三物种界面之间电荷的传输、分离及界面催化反应速率,有效抑制了g-C_3N_4主体材料光生电子和空穴的复合,因而g-C_3N_4/Ag–SCN复合材料的光催化制氢性能提高.考虑到其成本低、效率高,SCN~–助催化剂有很大的潜力广泛应用于制备高性能的银修饰光催化材料.  相似文献   

15.
近年来,等离子体材料因具有独特的局域表面等离子体共振(LSPR)效应,可实现可见光到近红外范围内光利用,因此引起人们的广泛关注.利用等离子体材料(贵金属或重掺杂半导体材料)合理构建异质结构,可以同时拓宽光催化剂的光谱响应范围,抑制载流子的复合,从而提高光催化活性.在已报道的等离子体半导体中,WO3–x具有无毒、价廉以及光谱响应宽等优异特性.本文通过将一维等离子体W18O49纳米线负载到2D g-C3N4纳米片上,构建了WO3–x/HCN S型异质结光催化剂.在可见光下光催化产氢活性测试中,纯相质子化氮化碳(HCN)的产氢活性相对较低,为259μmol·g?1·h?1,而W18O49/HCN复合材料的产氢活性显著高于HCN,其中性能最优的W18O49/HCN复合材料产氢速率为892μmol·g?1·h?1,约为HCN的3.4倍.在550 nm单色光照射下,W18O49/HCN复合材料的产氢速率仍有41.5μmol·g?1·h?1,纯相HCN和W18O49均未有H2生成.在420,450,520 nm处测得的W18O49/HCN复合材料的表观量子效率分别为6.21%,1.28%和0.14%.W18O49纳米线起着扩展光吸附和热电子供体的双重作用,使WO3–x/g-C3N4具有宽光谱响应的光催化分解水活性.等离子体W18O49纳米线可以产生热电子,热电子转移到HCN的导带(CB),参与水还原反应,实现宽光谱的光催化产氢活性.利用固体紫外测试确定了W18O49/HCN复合材料能带结构,与传统的WO3催化剂相比,W18O49在500–1200 nm处表现出明显的尾部吸收,这是由于W18O49大量的氧空位引起的LSPR效应.而W18O49/HCN异质结具有比HCN更长的吸收边.通过第一原理密度泛函理论模拟计算了W18O49和HCN的功函数,分别为5.73和3.95 eV.因此,当HCN与W18O49结合形成紧密的界面时,电子会从做功函数小的HCN向做功函数大的W18O49移动,直至达到费米能级平衡,形成内建电场.此外,由于电子数量的减少,HCN的能带边缘向上弯曲,而由于电子的捕获,W18O49能带边缘向下弯曲,这种向上与向下的能带弯曲是S型结构的典型特征之一,这也与XPS测试结果相吻合.W18O49/HCN异质结内建电场驱动WO3–x中导带(CB)的电子向g-C3N4的价带(VB)移动.在该设计中,效率低的电子和空穴被重新组合并排出,而具有高氧化还原能力的功能电子和空穴则被保留下来.不仅如此,S-scheme有望同时引导光生电子和热电子运动,从而避免逆电荷传递,有利于热电子的有效利用.W18O49和g-C3N4匹配的带隙所产生的S-scheme可以导致较强的氧化还原能力和较高的光诱导电荷迁移速率.对HCN与W18O49/HCN光电性能的测试结果表明,1D/2D W18O49/HCN异质结的构建可以充分改善光生电子-空穴对的分离和迁移,进而表现出更好的光催化活性.电子自旋共振结果也证实了W18O49/HCN中S型电荷转移机制.  相似文献   

16.
The g-C(3)N(4)-ZnO composite photocatalysts with various weight percents of ZnO were synthsized by a simple calcination process. The photocatalysts were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The PXRD and HR-TEM results show that the composite materials consist of hexagonal wurzite phase ZnO and g-C(3)N(4). The solid-state UV-vis diffuse reflection spectra show that the absorption edge of the composite materials shifts toward the lower energy region and to longer wavelengths in comparison with pure ZnO and g-C(3)N(4). Remarkably, the photocatalytic activity of g-C(3)N(4)-ZnO composites has been demonstrated, via photodegradation of Methyl Orange (MO) and p-nitrophenol experiments. The photocatalytic activity of g-C(3)N(4)-ZnO for photodegradation of Methyl Orange and p-nitrophenol under visible light irradiation was increased by over 3 and 6 times, respectively, to be much higher than that of single-phase g-C(3)N(4), clearly demonstrating a synergistic effect between ZnO and g-C(3)N(4). The concentrations of Zn(2+) in g-C(3)N(4)-ZnO system after a photocatalytic reaction at various reaction times were found to be much lower than those for a ZnO system under the same reaction conditions, indicating that the g-C(3)N(4)-ZnO composite possesses excellent long-term stability for a photocatalytic reaction in aqueous solutions. Furthermore, a synergistic photocatalysis mechanism between ZnO and g-C(3)N(4) was proposed based on the photodegradation results. Such obviously improved performance of g-C(3)N(4)-ZnO can be ascribed mainly to the enhancement of electron-hole separations at the interface of ZnO and g-C(3)N(4).  相似文献   

17.
Graphitic carbon nitride (g-C3N4) with high photocatalytic activity toward degradation of 4-nitrophenol under visible light irradiation was prepared by HCI etching followed by ammonia neutralization. The structure, morphology, surface area, and photocatalytic properties of the prepared samples were studied. After treatment, the size of the g-C3N4 decreased from several micrometers to several hundred nanometers, and the specific area of the g-C3N4 increased from 11.5 m2/g to 115 m2/g. Meanwhile, the photocatalytic activity of g-C3N4 was significantly improved after treatment toward degradation of 4- nitrophenol under visible light irradiation. The degradation rate constant of the small particle g-C3N4 is 5.7 times of that of bulk g-C3N4, which makes it a promising visible light photocatalyst for future applications for water treatment and environmental remediation.  相似文献   

18.
张彬  胡晓云  刘恩周  樊君 《催化学报》2021,42(9):1519-1529
近年来,能源短缺和环境污染严重威胁人类的可持续发展.光催化技术具有绿色环保、成本低等优势,被认为是解决上述问题的最佳途径之一,其实用化的核心是开发高效可见光催化材料.石墨相氮化碳(g-C3N4)因其物理化学性质稳定、无毒、廉价及能带适宜等特点,广泛应用于光催化领域.然而,光生载流子易复合、比表面积小等问题不利于其实际应用,构建g-C3N4基2D/2D异质结不仅能促进载流子有效分离,而且能为反应提供更多表面空间环境,是提高g-C3N4催化活性的有效途径.目前,I型和II型异质结虽能促进电荷分离,但降低了电荷参与表面反应的电势;而S型异质结电荷转移机制遵循热力学和动力学规律,能很好保留高氧化还原能力的电子和空穴,因而备受关注.当前,开发S型g-C3N4基2D/2D异质结有助于发展高效光催化体系.本文首先以三聚氰胺为前驱体,通过二次高温煅烧得到2D g-C3N4纳米片;随后,以Bi(NO3)3·5H2O和KBr为反应物,乙二胺和水为溶剂,借助室温原位自组装法获得一系列不同质量比的BiOBr/g-C3N4异质结.研究表明,BiOBr均匀分布于g-C3N4表面形成具有良好接触界面的2D/2D异质结,而且BiOBr/g-C3N4比表面积可提高至g-C3N4的2.4倍.当BiOBr与g-C3N4质量比为1.5:1时,可见光照射30 min,30 mg复合样品可将浓度为10 mg·L-1的RhB(100 mL)几乎全部降解,降解过程符合一级反应动力学,降解速率是g-C3N4的48.2倍.此外,该体系具有一定的光催化析氢活性及良好的循环稳定性.X射线光电子能谱、紫外光电子能谱、莫特肖特基、电化学阻抗谱分析及活性物种捕获等实验结果表明,由于还原性半导体g-C3N4与氧化型半导体BiOBr费米能级不同,二者接触时,电子从费米能级高的g-C3N4转移至费米能级低的BiOBr,在复合材料界面产生强的内建电场,借助带边弯曲和库仑力共同作用,形成了具有S型电荷转移途径的2D/2D BiOBr/g-C3N4异质结.在光照条件下,g-C3N4价带空穴能与BiOBr导带电子快速复合(一般认为是无用的电荷),从而使具有高反应活性的g-C3N4导带电子与BiOBr价带空穴参与表面反应,有效提高了体系的催化活性.综合本文及其他相关研究可知,在由氧化型和还原型半导体组成的异质结中,S型电荷转移机制具有一定普适性,可指导开发高效光催化体系以解决能源和环境问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号