首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-linear finite element analysis is presented, for the elasto-plastic behavior of thick shells and plates including the effect of large rotations. The shell constitutive equations developed previously by the authors [Voyiadjis, G.Z., Woelke, P., 2004. A refined theory for thick spherical shells. Int. J. Solids Struct. 41, 3747–3769] are adopted here as a base for the formulation. A simple C0 quadrilateral, doubly curved shell element developed in the authors’ previous paper [Woelke, P., Voyiadjis, G.Z., submitted for publication. Shell element based on the refined theory for thick spherical shells] is extended here to account for geometric and material non-linearities. The small strain geometric non-linearities are taken into account by means of the updated Lagrangian method. In the treatment of material non-linearities the authors adopt: (i) a non-layered approach and a plastic node method [Ueda, Y., Yao, T., 1982. The plastic node method of plastic analysis. Comput. Methods Appl. Mech. Eng. 34, 1089–1104], (ii) an Iliushin’s yield function expressed in terms of stress resultants and stress couples [Iliushin, A.A., 1956. Plastichnost’. Gostekhizdat, Moscow], modified to investigate the development of plastic deformations across the thickness, as well as the influence of the transverse shear forces on plastic behaviour of plates and shells, (iii) isotropic and kinematic hardening rules with the latter derived on the basis of the Armstrong and Frederick evolution equation of backstress [Armstrong, P.J., Frederick, C.O., 1966. A mathematical representation of the multiaxial Bauschinger effect. (CEGB Report RD/B/N/731). Berkeley Laboratories. R&D Department, California.], and reproducing the Bauschinger effect. By means of a quasi-conforming technique, shear and membrane locking are prevented and the tangent stiffness matrix is given explicitly, i.e., no numerical integration is employed. This makes the current formulation not only mathematically consistent and accurate for a variety of applications, but also computationally extremely efficient and attractive.  相似文献   

2.
A thermodynamic consistent, small-strain, non-unified model is developed to capture the irregular rate dependency included in the strain controlled inelastic responses of polymers at the glassy state. The model is considered as a generalized Frederick-Armstrong-Philips-Chaboche (FAPC) theory proposed by [Voyiadjis and Basuroychowdhury, 1998] and [Voyiadjis and Abu Al-Rub, 2003] which is based on a von Mises and Chaboche isotropic hardening type viscoplasticity formulation. Using the proposed model, different experimental results are simulated and the range of viscoplastic related material constants are obtained through a parametric study. The thermodynamic framework is used to incorporate the effect of coupling between viscodamage and viscohealing phenomena into the inelastic deformation of glassy polymers. This coupling effect is crucial for polymeric based self healing systems in which different damage mechanisms are active and the efficiency of the healing processes are highly dependent on the damage. The computational aspect for general coupled inelastic-damage-healing processes together with the required solution algorithms are elaborated and the inelastic-damage-healing response of a polymeric based self-healing system is simulated. The proposed viscoplasticity theory constitutes a physically consistent approach to model the irregular mechanical responses of glassy polymers and the viscodamage model provides an exquisite predicting tool to evaluate the ductile damage associated with the large inelastic deformation and low cycle fatigue in polymeric based material systems. In conclusion, a well structured viscohealing theory is formulated for polymeric based self healing systems.  相似文献   

3.
有限弹塑性变形的三维组集式本构模型   总被引:2,自引:1,他引:2  
梁乃刚  程品三 《力学学报》1992,24(2):162-170
本文将文[1]中提出的三维组集式弹塑性本构模型推广应用于有限变形分析,导出了全量型和增量型本构关系在初始构形上的拉格朗日(Total Lagrange)形式和瞬时构形上的拉格朗日(Updated Lagrange)形式。文中对晶体单轴拉伸中的宏观剪切带进行了分析。预测结果与实验吻合。从而说明这种本构模型能够模拟有限变形中的几何非线性效应和晶体材料塑性变形中的宏观力学行为。  相似文献   

4.
含空洞非线性材料的本构势和空洞扩展率   总被引:6,自引:2,他引:6  
本文基于体胞模型的解析分析,分析了含空洞非线性材料的宏观本构势,得到了各种幂硬化指数下宏观应力和基体平均流变应力之间的相关曲线.当基体是遵循经典塑性全量理论时,这些曲线方程就是一簇依赖于空洞体积比和硬化指数的屈服面方程.当基体是粘性体时,这些方程就是粘性约束方程.通过曲线拟合的方法,本文发展了修正的Gurson方程,使之适合于不同硬化指数的情况.最后本文计算了粘性体中空洞的相对扩展率,结果与已有体胞模型的数值模拟计算结果相当一致.  相似文献   

5.
The paper deals with the problem of nonlocal generalization of constitutive models such as microplane model M4 for concrete, in which the yield limits, called stress–strain boundaries, are softening functions of the total strain. Such constitutive models call for a different nonlocal generalization than those for continuum damage mechanics, in which the total strain is reversible, or for plasticity, in which there is no memory of the initial state. In the proposed nonlocal formulation, the softening yield limit is a function of the spatially averaged nonlocal strains rather than the local strains, while the elastic strains are local. It is demonstrated analytically as well numerically that, with the proposed nonlocal model, the tensile stress across the strain localization band at very large strain does soften to zero and the cracking band retains a finite width even at very large tensile strain across the band only if one adopts an “over-nonlocal” generalization of the type proposed by Vermeer and Brinkgreve [In: Chambon, R., Desrues, J., Vardoulakis, I. (Eds.), Localisation and Bifurcation Theory for Soils and Rocks, Balkema, Rotterdam, 1994, p. 89] (and also used by Planas et al. [Basic issue of nonlocal models: uniaxial modeling, Tecnical Report 96-jp03, Departamento de Ciencia de Materiales, Universidad Politecnica de Madrid, Madrid, Spain, 1996], and by Strömberg and Ristinmaa [Comput. Meth. Appl. Mech. Eng. 136 (1996) 127]). Numerical finite element studies document the avoidance of spurious mesh sensitivity and mesh orientation bias, and demonstrate objectivity and size effect.  相似文献   

6.
Interest in the hydrodynamics of a liquid with particle rotations and microdeformations has recently intensified [1–9] in connection with the technical applications of different artificially synthesized structured media. A model of a liquid with deformable microstructure was first proposed in [4] and was thermodynamically analyzed in [6], in which a model of a liquid was constructed by means of methods from the thermodynamics of irreversible processes. A model of a macro- and microincompressible liquid with particle rotations and deformations has been proposed [7, 8] based on constitutive equations from [6]. Below we will solve the sphere rotation problem in an infinite liquid given different boundary conditions on the rates of particle rotation and microdeformation within the context of the system of equations presented in [7]. The solution of an analogous problem for a micropolar liquid simulating a suspension with solid particles has been obtained [9] and the solution for a viscous liquid was found by Stokes in [10].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnieheskoi Fiziki, No. 1, pp. 79–87, January–February, 1976.  相似文献   

7.
在文献[1]中建立的多孔介质中化学-热-渗流-力学(CTHM)本构模型基础上,针对文献[2]建立的非饱和多孔介质中热-渗流-力学耦合分析的混合有限元方法,发展了非饱和多孔介质中混合元的化学-热-渗流-力学(CTHM)耦合本构模拟算法。采用非关联流动多重屈服准则模拟非饱和多孔介质的材料非线性行为。推导了u-pw-pa-T形式的包含了耦合率本构方程积分的向后欧拉映射算法和一致性弹塑性切线模量矩阵(单元刚度矩阵)的混合元一致性算法。本文给出了临界状态线(CSL)和状态边界面(SBS)两个屈服准则的一致性算法。数值结果显示了本文所发展的混合元耦合本构模拟算法在模拟由热、化学、力学荷载共同引起的多孔介质中化学-热-渗流-力学(CTHM)耦合行为的能力和有效性。  相似文献   

8.
We study plane strain dynamic thermomechanical deformations of an fcc single crystal compressed along the crystallographic direction [010] at an average strain rate of 1000 sec−1. Two cases are studied; one in which the plane of deformation is parallel tothe plane (001) of the single crystal, and another one with deformation occuring in the plane (101̄) of the single crystal. In each case, the 12 slip systems are aligned symmetrically about the two centroidal axes. We assume that the elastic and plastic deformations of the crystal are symmetrical about these two axes. The crystal material is presumed to exhibit strain hardening, strain-rate hardening, and thermal softening. A simple combined isotropic-kinematic hardening expression for the critical resolved shear stress, proposed by Weng, is modified to account for the affine thermal softening of the material. When the deformation is in the plane (001) of the single crystal, four slip systems (111)[11̄0], (111̄)[11̄0], (11̄;1̄;)[110], and (11̄1)[110] are active in the sense that significant plastic deformations occur along these slip systems. However, when the plane of deformation is parallel to the plane (101̄;) of the single crystal, slip systems (11̄;1)[110], (11̄1)[011], (111)[11̄0], and (111)[01̄1] are more active than the other eight slip systems. At an average strain of 0.0108, the maximum angle of rotation of a slip system within a shear band, about an axis perpendicular to the plane of deformation, is found to be 20.3° in the former case, and 22.9° in the latter.  相似文献   

9.
The problem of the propagation of a spherical detonation wave in water-saturated soil was solved in [1, 2] by using a model of a liquid porous multicomponent medium with bulk viscosity. Experiments show that soils which are not water saturated are solid porous multicomponent media having a viscosity, nonlinear bulk compression limit diagrams, and irreversible deformations. Taking account of these properties, and using the model in [2], we have solved the problem of the propagation of a spherical detonation wave from an underground explosion. The solution was obtained by computer, using the finite difference method [3]. The basic wave parameters were determined at various distances from the site of the explosion. The values obtained are in good agreement with experiment. Models of soils as viscous media which take account of the dependence of deformations on the rate of loading were proposed in [4–7] also. In [8] a model was proposed corresponding to a liquid multicomponent medium with a variable viscosity.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 34–41, May–June, 1984.  相似文献   

10.
In the present study singular fractal functions (SFF) were used to generate stress-strain plots for quasi-brittle material like concrete and cement mortar and subsequently stress-strain plot of cement mortar obtained using SFF was used for modeling fracture process in concrete. The fracture surface of concrete is rough and irregular. The fracture surface of concrete is affected by the concrete’s microstructure that is influenced by water cement ratio, grade of cement and type of aggregate [1], [2], [3] and [4]. Also the macrostructural properties such as the size and shape of the specimen, the initial notch length and the rate of loading contribute to the shape of the fracture surface of concrete. It is known that concrete is a heterogeneous and quasi-brittle material containing micro-defects and its mechanical properties strongly relate to the presence of micro-pores and micro-cracks in concrete [1], [2], [3] and [4]. The damage in concrete is believed to be mainly due to initiation and development of micro-defects with irregularity and fractal characteristics. However, repeated observations at various magnifications also reveal a variety of additional structures that fall between the ‘micro’ and the ‘macro’ and have not yet been described satisfactorily in a systematic manner [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [15], [16] and [17]. The concept of singular fractal functions by Mosolov was used to generate stress-strain plot of cement concrete, cement mortar and subsequently the stress-strain plot of cement mortar was used in two-dimensional lattice model [28]. A two-dimensional lattice model was used to study concrete fracture by considering softening of matrix (cement mortar). The results obtained from simulations with lattice model show softening behavior of concrete and fairly agrees with the experimental results. The number of fractured elements are compared with the acoustic emission (AE) hits. The trend in the cumulative fractured beam elements in the lattice fracture simulation reasonably reflected the trend in the recorded AE measurements. In other words, the pattern in which AE hits were distributed around the notch has the same trend as that of the fractured elements around the notch which is in support of lattice model.  相似文献   

11.
This work is devoted to the numerical modelling of a reactive gas-particle flow that arises in internal ballistic. The model, proposed by Gough [2], takes into account complex physical phenomena such as mass transfer, drag force or intra granular stress. A non-conservative finite volume approach adapted from [11] is applied in order to simulate the model. After an academic validation test case of the scheme, the combustion propagation ignited by a cylindrical perforated primer is then simulated and compared with experiments.  相似文献   

12.
Summary The proposed method can be used to investigate problems for plates weakened by a finite number of arbitrarily located curvilinear openings at given stresses or displacements, and also in the presence of reinforcing rings or elastic cores.Without serious modification the method can also be used by analogy with [4] and [5], for the solution of periodic, doubly periodic and cyclosymmetric problems.Prikladnaya Mekhanika, Vol. 2, No. 1, pp. 3–19, 1966  相似文献   

13.
The paper deals with an analytical study on the stability of blood vessel walls. The theory of small deformation superposed on a known state of finite deformation, together with the anisotropic visco-elastic constitutive relations of Vaishnav and Patel [1] for vascular tissues, are employed for the purpose. By using the material functions of Young et al. [2], the latent instabilities of canine middle descending thoracic aortic wall are predicted in terms of the circumferential and axial extension ratios.Paper presented by J. C. Misra at the Fourth International Congress of Biorheology, Jikei University School of Medicine, Tokyo (Japan), July 27–August 1, 1981.  相似文献   

14.
Relatively simple and efficient micromechanical models are used to obtain the uniaxial response of SCS-6/Timetal 21S with [0]4 and [0/90]s laminates when subjected to isothermal and thermomechanical fatigue (TMF) loadings. Features of the modeling that are required to obtain the accurate deformation behavior for this class of materials under these loadings are highlighted. To this end, a comparison is made between the concentric cylinder model and the uniaxial stress model for representing the [0] laminate. The axial stresses from the two models are very similar under mechanical loading. The greatest differences appear under thermal loading alone. The differences on the composite response between a time-independent elastic-plastic and a viscoplastic matrix constitutive model are also examined. The latter is based on the Bodner-Partom unified constitutive model. The [0/90] laminate is treated by adding a parallel element with smeared [90] ply properties to the [0] model and invoking axial strain compatibility as well as stress equilibrium. The proposed constitutive law for the [90] ply includes both matrix viscoplasticity and fiber/matrix separation damage and is based on damage mechanics concepts. The effect of cyclic frequency on TMF behavior is examined. The in-phase TMF life is shown to be very sensitive to frequency due to the relaxation of matrix stress and the attendant increase in fiber stress.  相似文献   

15.
The aim of this work is to give a direct and constructive proof of existence and uniqueness of a global solution to the equations of age-dependent population dynamics introduced and considered by M. E. Gurtin & R. C. MacCamy in [3]. The linear theory was developed by F. R. Sharpe & A. J. Lotka [10] and A. G. McKendrick [8] (see also [1], [9]) and extended to the nonlinear case by M. E. Gurtin & R. C. MacCamy in [3] (see also [4] [5] [6]). In [3], the key of the proof of existence and uniqueness was to reduce the problem to a pair of integral equations. In fact, as we shall see, the problem can also be solved by a simple fixed point argument. To outline more clearly the ideas of the proof, we will first discuss the setting and the resolution of the linear case, and then we will generalize the results of [3].  相似文献   

16.
This article presents the implementation of the constitutive model of Wheeler (Geotechnique 53(1):41–54, 2003) for coupling of hydraulic hysteresis and mechanical behavior of unsaturated soils in a fully coupled transient hydro-mechanical finite element (FE) model (computer code UNSATEX) developed by the authors. The constitutive model considers the effects of irreversible changes of degree of saturation on stress–strain behavior and the influence of plastic volumetric strains on the water retention behavior. The mathematical framework and the numerical implementation of the constitutive model are presented and discussed. The FE model is verified and validated against analytical predictions [obtained using the model of Wheeler (Geotechnique 53(1):41–54, 2003] as well as experimental results from the literature involving unsaturated soils undergoing various combinations of drying, wetting, loading, unloading, and reloading paths. Comparison of the results shows that the developed FE model can be used to predict various aspects of the behavior of unsaturated soils under drying and wetting as well as loading and unloading paths. The merits and limitations of the FE model are highlighted.  相似文献   

17.
A new approach to the existence theory for the Navier-Stokes equations, using a technique of Kato [15], further developed in combination with estimates for Oseen's equation by Kobayashi & Shibata [17] and Shibata [24], has made possible the solution of a long-standing open problem often referred to as Finn's “starting problem”. This paper provides the solution. (Accepted January 31, 1996)  相似文献   

18.
19.
In the present paper the diffuse and localized necking models according to Swift [Swift, H.W., 1952. Plastic instability under plane stress, Journal of the Mechanics and Physics of Solids, 11–18], Hill [Hill, R., 1952. On discontinuous plastic states, with special reference to localized necking in thin sheets. Journal of the Mechanics and Physics of Solids 1, 19–30] and Marciniak and Kuczyński [Marciniak, Z., Kuczyński, K., 1967. Limit strains in the process of stretch-forming sheet metal. International Journal of Mechanical Sciences 9, 609–620], respectively, are considered. A theoretical framework for the mentioned models is proposed that covers rigid–plastic as well as elastic–plastic constitutive modelling using various advanced phenomenological yield functions that are able to account very accurately for plastic anisotropy. The mentioned necking models are applied to different orthotropic sheet metals in order to assess their predictive capabilities and to stress out some potential sources for discrepancies between simulations and experiments. In particular, the impact of the applied hardening curve and the equibiaxial r-value, which was recently introduced by Barlat [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Choi, S.-H., Pourboghrat, F., Chu, E., Lege, D.J., 2003. Plane stress yield function for aluminium alloy sheets – part 1: theory. International Journal of Plasticity 19, 297–1319], on formability prediction is investigated. Furthermore, the impact of the Portevin–LeChatelier effect on the formability of aluminum sheet metals is discussed.  相似文献   

20.
The retarded histories of unsteady plane parallel (Poiseuille) flows of Simple Fluids with Fading Memory between two parallel plates of infinite extent at a finite distance apart are shown to be admissible, in the sense that they satisfy the equations of motion at arbitrary time t = 0 to any order of approximation in the retardation parameter according to the scheme of approximation of Coleman & Noll [2]. The result obtained by Coleman & Mizel [6] for second-order fluids is reinterpreted in the above context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号