首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In emulsification processes, the estimation of the droplet size distribution is important data not only because it is linked with the manufacturing process, but also because it is an important parameter affecting the emulsion stability. The aim of this research is to use the ultraviolet-visible transmission spectrum as a tool for emulsion characterization (droplet size and stability) to be a function of monomer concentration, and to verify of emulsion stability using the volume of separated phase's technique. Both techniques are applied to monomer emulsions as a function of emulsifier concentration. Results show correlations between droplet size measurements and stability of emulsions using the spectroscopy technique; results were also found to be in agreement using the cleared volume method.  相似文献   

3.
Droplet size and size distribution changes at homogenization of paraffin oil emulsions, stabilized by different concentrations of various emulsifiers, were investigated. During homogenization, samples were taken from emulsions and the most frequently occuring diameter, mean droplet diameter and standard deviation (distribution width) were determined. Mathematical relations describing changes of mean diameter and distribution width, as a function of the homogenization period and emulsifier concentration, were derived and applied to the experimental data. Emulsifier efficiencies and capabilities were characterized by physical constants and graphically. Optimal homogenization time interval, optimal emulsifier concentrations and corresponding droplet size distribution parameters were computed.  相似文献   

4.
The accuracy of the recently reported low-resolution NMR method (Goudappel, G. J. W.; et al. J. Colloid Interface Sci. 2001, 239, 535) for the determination of drop-size distribution in oil-in-water emulsions is evaluated by comparing the NMR results with precise data from video-enhanced optical microscopy. A series of 27 soybean-oil-in-water emulsions, differing in their mean drop size, polydispersity, oil volume fraction, and emulsifier, is studied. Soybean oil is selected as a typical component of food emulsions. The experimental error of our optical procedure for drop-size determination is estimated to be around 0.3 microm, which allows us to use the microscopy data as a reference for the mean drop-size and distribution width of the studied emulsions, with known experimental error. The main acquisition parameters in the NMR experiment are varied to find their optimal values and to check how the experimental conditions affect the NMR results. Comparison of the results obtained by the two methods shows that the low-resolution NMR method underestimates the mean drop size, d33, by approximately 20%. For most of the samples, NMR measures relatively precisely the distribution width (+/-0.1 to 0.2 dimensionless units), but for approximately 20% of the samples, larger systematic deviation was registered (underestimate by 0.3-0.4 units). No correlation is found between the emulsion properties and the relative difference between the microscopy and NMR data. Possible reasons for the observed discrepancy between NMR and optical microscopy are discussed, and some advantages and limitations of the low-resolution NMR method are considered.  相似文献   

5.
Emulsions are used in a wide range of applications and industries. Their size distribution is an important parameter because it influences most of the emulsion properties of emulsions. Several techniques of characterization are used to determine the granulometric distribution of emulsions, but they are generally limited to dilute samples and are based on complex algorithms. We describe a method that allows characterization of the droplet size distribution of emulsions using thermal analysis (thermogranulometry). This method permits the use of very concentrated samples without any dilution or perturbation of the system. We first define our method by a thermodynamic and kinetic approach. We studied a real system, i.e., crude oil emulsions, which form very concentrated, viscous, and opaque emulsions with water. We present a correlation between the size of droplets and their freezing temperature, corresponding to our system. Then we compare the size distributions obtained by our method with those derived by direct microscopy observations. The results obtained show that thermogranulometry may be an interesting method of characterization of emulsions, even for concentrated systems.  相似文献   

6.
This paper describes a proton nuclear magnetic resonance (NMR) technique, pulsed field gradient with diffusion editing (PFG-DE), to quantify drop size distributions of brine/crude oil emulsions. The drop size distributions obtained from this technique were compared to results from the traditional pulsed field gradient (PFG) technique. The PFG-DE technique provides both transverse relaxation (T2) and drop size distributions simultaneously. In addition, the PFG-DE technique does not assume a form of the drop size distribution. An algorithm for the selection of the optimal parameters to use in a PFG-DE measurement is described in this paper. The PFG-DE technique is shown to have the ability to resolve drop size distributions when the T2 distribution of the emulsified brine overlaps either the crude oil or the bulk brine T2 distribution. Finally, the PFG-DE technique is shown to have the ability to resolve a bimodal drop size distribution.  相似文献   

7.
8.
Cross-flow membrane emulsification has great potential to produce monodisperse emulsions and emulsions with shear sensitive components. However, until now, only low disperse phase fluxes were obtained. A low flux may be a limiting factor for emulsion production on a commercial scale. Therefore, the effects of membrane parameters on the disperse phase flux are estimated. Besides, the effects of these parameters on the droplet size and droplet size distribution are qualitatively described. Wetting properties, pore size and porosity mainly determine the droplet size (distribution). Membrane morphology largely determines the disperse phase flux. As an example, industrial-scale production of culinary cream was chosen to evaluate the required membrane area of different types of membranes: an SPG membrane, an -Al2O3 membrane and a microsieve. Due to the totally different morphologies of these membranes, the fraction of active pores is 1 for a microsieve and is very low for the other membranes. The choice of the optimal membrane did not depend on the production strategy: either to produce large quantities or to produce monodisperse emulsions, the best suitable was a microsieve with an area requirement of around 1 m2. In general, the total membrane resistance should be low to obtain a large disperse phase flux. In contrast, the membrane resistance should be high to obtain monodisperse emulsions when using membranes with a high porosity.  相似文献   

9.
Pulsed field gradient NMR (PFG-NMR) is an important method for the characterisation of emulsions. Apart from its application in quality control and process development, especially high-field NMR methods can be applied to investigate emulsions properties on the molecular level. Meanwhile, complex emulsion structures such as double emulsions have been developed and require analytical tools especially for the determination of droplet size distributions. This contribution provides an overview on the possibilities and methods of PFG-NMR referring to measurement, data processing and interpretation of droplet size distributions. Comparison of techniques and measurements on double emulsions are presented.  相似文献   

10.
Video enhanced microscopy (VEM) enables direct investigation of dilute emulsions. A practical and effective preparative technique utilizes microslides, which are flat, rectangular microcapillaries made from borosilicate glass. Experimental difficulties due to droplet sedimentation and droplet-microslide wall interaction can be drastically reduced, even eliminated, by the use of low density contrast emulsions, i.e. emulsions where the densities of the dispersed and continuous phases are not very different. The dichlorodecane (DCD)-in-water emulsion is an example of such a system. This system.can as such be used for measurement of the time of the elementary act of coalescence, calculated from the evolution in the droplet size distribution. The developing distributions can be determined through automated VEM.

In this paper we discuss the perspective for elaboration of a standard method for the determination of an averaged time for the elementary act of coalescence. The experimental basis is automated measurement of the time dependence of the droplet size distribution, as applied to dilute DCD/w emulsions at singlet-doublet equilibrium.  相似文献   

11.
The viscous behavior of oil-in-water (O/W) emulsions is studied over a broad range of dispersed-phase concentrations (φ) using a controlled-stress rheometer. At low-to-moderate values of φ (φ<0.60), emulsions exhibit Newtonian behavior. The droplet size does not exert any influence on the viscosity of Newtonian emulsions. However, at higher values of φ, emulsions exhibit shear-thinning behavior. The viscosity of shear-thinning emulsions is strongly influenced by the droplet size; a significant increase in the viscosity occurs when the droplet size is reduced. With the decrease in droplet size, the degree of shear thinning in concentrated emulsions is also enhanced. The viscosity data of Newtonian emulsions are described reasonably well by the cell model of Yaron and Gal-Or (Rheol. Acta 11, 241 (1972)), which takes into account the effects of the dispersed-phase concentration as well as the viscosity ratio of the dispersed phase to continuous phase. The relative viscosities of non-Newtonian emulsions having different droplet sizes but the same dispersed-phase concentration are scaled with the particle Reynolds number. The high shear viscosities of non-Newtonian emulsions can be predicted fairly well by the cell model of Yaron and Gal-Or (Rheol. Acta 11, 241 (1972)). Copyright 2000 Academic Press.  相似文献   

12.
Emulsion droplet sizing using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) is a well-established technique. Traditionally these measurements require total acquisition times of typically 5-20 min per sample, which severely limits our ability to use this method to study dynamic processes. Here we present the application and verification of an NMR pulse sequence, Difftrain, which enables emulsion droplet size distributions to be measured in 3-10 s. We have previously introduced applications of Difftrain (C. Buckley, K.G. Hollingsworth, A.J. Sederman, D.J. Holland, M.L. Johns, L.F. Gladden, J. Magn. Reson. 161 (2003) 112-117), including the droplet sizing of a single unimodal emulsion sample. In this paper, several model emulsions containing different oils are measured and the results compared directly with sizing provided by laser scattering. In this manner, the Difftrain method is verified and its possibilities and limitations are explored. Guidelines are proposed for the range of droplet sizes for which accurate results can be produced. The Difftrain technique opens up the possibility of studying non-equilibrium emulsions; a study of the in situ emulsification of a 21% v/v water-in-silicone oil emulsion is presented.  相似文献   

13.
The preparation and stability of oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose (HMHEC) were investigated. The rheological measurements of aqueous HMHEC were studied. It was found that HMHEC showed much better thickening ability than the parent (HEC) from which it was derived, which is caused by the association of the hydrophobic alkyl chains, which are absent in HEC. The oscillatory experimental results of the emulsions showed that at higher concentrations, HMHEC could form an elastic gel, which has good thixotropic properties. The stability and droplet size distribution were investigated by visual observation, photomicrograph and a laser-scattering particle size distribution analyzer. The adsorption of HMHEC at the oil-water interface and the surface of emulsion droplets due to the penetration of the alkyl chains in HMHEC into the oil phase were confirmed by visual observation, the interfacial tension method and an in situ environmental scanning electron microscope (ESEM). The stability of emulsions prepared using HMHEC is based on both an associative thickening mechanism caused by alkyl chains in HMHEC and the adsorption of HMHEC at the oil-water interface, which can form a solid film preventing coalescence of the droplets.  相似文献   

14.
Multiple water-in-oil-in-water (W/O/W) emulsions offer a huge potential as encapsulation systems in different food, cosmetic, and pharmaceutical applications. Because of their complex structure, however, it is difficult to characterize these systems. Typical measurement techniques to determine the size and stability of the inner water droplets encapsulated in the oil droplets show limitations and inaccuracies. Determining the total amount of water in the inner droplets is most often done by indirect methods to date. We describe an analytical method based on differential scanning calorimetry (DSC) for characterizing the total amount of encapsulated water droplets and their stability in W/O/W multiple emulsions. It uses the possibility to directly determine the latent heat of freezing of water droplets of the same size and composition as in the multiple emulsions. The amount of water in the inner droplets of a W/O/W emulsion can thus be calculated very accurately. It is shown that this method enables furthermore detecting multi-modalities in the size distribution of inner water droplets in W/O/W emulsions. Changes in droplet size distribution of the inner droplets occurring during the second emulsification step of processing or during storage can be detected. DSC thus offers a powerful tool to characterize the structure of multiple W/O/W emulsions.  相似文献   

15.
Ultrasonic attenuation measurement is a frequently used tool for non-destructive determination of dispersion characteristics. Useful information like particle or droplet size and their concentration can be obtained, if the relation between size and attenuation of the dispersion is known. In this work, the theoretical model by Faran for the intermediate sound wave regime (IWR) is presented in combination with experimental data. In the IWR, the acoustic behavior is governed by elastic scattering rather than by dissipative effects. Experiments with emulsion of droplet sizes greater than 10 mum were carried out. Silicone oil, sunflower oil and olive oil were selected for the disperse phase of the oil-in-water emulsions. First, emulsions having droplets in the micrometer range were created. Afterwords, attenuation measurements of different concentrated emulsion were carried out. Some adjustments reflecting concentration influence were performed to outline the agreement between calculations and measurements. The validity of the model can be confirmed, if the volume fraction of the disperse phase is considered as a variable. Finally, droplet size distributions from theoretical attenuation spectra could be calculated based on a log-normal distribution.  相似文献   

16.
Critical comparison of dependences of elastic and plastic properties of highly concentrated emulsions (so-called “compressed” emulsions) on the concentration and droplet sizes is performed. The studied emulsions of water-in-oil type are so-called “liquid explosives.” They are characterized by different mean sizes and different droplet size distributions of the dispersed phase. Different average values (D av, D 32, and D 43) are used as characteristics of droplet sizes. Experiments are carried out with emulsions of two concentrations. Aqueous phase (dispersed droplets) is presented by supercooled solutions of inorganic salt in water in a metastable state. The concentration limit of the existence of highly concentrated emulsions is determined by the condition of the closest packing of liquid droplets, which lies in the φ* = 0.77–0.80 range. In addition, there is a limiting value of the maximal size of droplets. This limiting value depends on the concentration and meets the requirement that droplets should be small enough for the solution to exist in a supercooled state. The elastic modulus and the yield stress of emulsions studied are proportional to the square of the reciprocal linear size of droplets, which contradicts some theoretical models, according to which these parameter should be proportional to the reciprocal size of droplets. Using the obtained experimental data, we constructed generalized dependences of the elastic modulus and the yield stress on the concentration and size of droplets. These characteristics are in good agreement with the experimental data.  相似文献   

17.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

18.
The influence of surface and thermal denaturation of adsorbed beta-lactoglobulin (beta-Lg) on the flocculation of hydrocarbon oil droplets was measured at pH 3 and compared with that at pH 7. Oil-in-water emulsions (5 wt % n-hexadecane, 0.5 wt % beta-Lg, pH 3.0) were prepared that contained different levels of salt (0-150 mM NaCl) added immediately after homogenization. The mean particle diameter (d43) and particle size distribution of diluted emulsions were measured by laser diffraction when they were either (i) stored at 30 degrees C for 48 h or (ii) subjected to different thermal treatments (30-95 degrees C for 20 min). In the absence of salt, little droplet flocculation was observed at pH 3 or 7 because of the strong electrostatic repulsion between the droplets. In the presence of 150 mM NaCl, a progressive increase in mean particle size with time was observed in pH 7 emulsions during storage at 30 degrees C, but no significant change in mean particle diameter with time (d43 approximately 1.4 +/- 0.2 microm) was observed in the pH 3 emulsions. Droplet aggregation became more extensive in pH 7 emulsions containing salt (added before thermal processing) when they were heated above 70 degrees C, which was attributed to thermal denaturation of adsorbed beta-Lg leading to interdroplet disulfide bond formation. In contrast, the mean particle size decreased and the creaming stability improved when pH 3 emulsions were heated above 70 degrees C. These results suggest that the droplets in the pH 3 emulsions were weakly flocculated at temperatures below the thermal denaturation temperature of beta-Lg (T < 70 degrees C) but that flocs did not form so readily above this temperature, which was attributed to a reduction in droplet surface hydrophobicity due to protein conformational changes. The most likely explanation for the difference in behavior of the emulsions is that disulfide bond formation occurs much more readily at pH 7 than at pH 3.  相似文献   

19.
Oil-in-water emulsions containing 40% wt sunflower oil were prepared using ultrasound with the frequency of 30 kHz. The effect of sonication time, stabilizer concentration, NaCl, and pH of aqueous phase on the stability and particle size distribution of samples was investigated using Taguchi statistical method. The results showed that increasing sonication time decreased mean diameter of droplets and narrowed droplet size distribution curves. NaCl was found to have a positive effect on the stability of samples. More stable emulsions were prepared when using xanthan and pectin together at pH 4.  相似文献   

20.
Various nuclear magnetic resonance (NMR) techniques were used to monitor the freezing behaviour of suspended 2-mm-diameter drops. The drops were composed of hydrocarbon oils emulsified in either water or water/sucrose mixtures. As such they were good model systems for the study of spray freezing, sharing structural similarities with potential products such as ice cream. In particular, simple 1H NMR spectroscopy was used to monitor and individually quantify the freezing or solidification behaviour of the various constituent species of the drops. In addition, the effect of freezing on the emulsion droplet size distribution (and hence emulsion stability) was also measured based on NMR self-diffusion measurements. The effect of freeze/thaw cycling was also similarly studied. The nucleation temperature of the emulsion droplets was found to depend on the emulsion droplet size distribution: the smaller the droplets, the lower the nucleation temperature. Emulsion droplet sizing indicated that oil-in-sucrose-solution emulsions were more stable, showing minimal coalescence, whereas oil-in-water emulsions showed significant coalescence during freezing and freeze/thaw cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号